帳號:guest(52.14.167.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:卓宇志
作者(英文):Yu-Jhih Jhuo
論文名稱:史都華平台在光纖對位自動控制系統的設計
論文名稱(英文):Automatic Control System Design for Optical Fiber Alignment with Stewart Platform
指導教授:陳震宇
蘇仲鵬
指導教授(英文):Jen-Yeu Chen
Juhng-Perng Su
口試委員:曾萬存
陳震宇
蘇仲鵬
口試委員(英文):Wan-Tsun Tseng
Jen-Yeu Chen
Juhng-Perng Su
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610523009
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:105
關鍵詞:史都華六軸平台運動學光纖耦合場指向模式音圈馬達
關鍵詞(英文):Stewart platformkinematicsfiber alignmentFOCvoice motor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
光纖通訊是當代的有線通訊網路系統的主流技術。在光纖元件製造的過程中,高精度的自動組裝技術不可或缺。而史都華六軸平台具有高精度、剛性結構、酬載能力出色以及運動快速的特點,能夠充分滿足光纖耦合快速且高精度需求。與習用的堆疊式光纖耦合機台相比較,用史都華平台進行光纖耦合,具有精度高、速度快以及體積小的優點。

為了實現光纖耦合快速自動對位的技術,高明鐵企業股份有限公司開發的音圈型史都華六軸平台,採用兩段式結構將機台體積縮小,以音圈馬達作為致動器且具有響應快速以及體積小巧的優點,完成一新結構型態的史都華六軸平台。

本論文係針對前述機台,分析其運動學以及工作空間的計算,整合人機介面、上位控制器、下位驅動器,設計成為一光纖自動對位的控制系統。主要貢獻於整合前述各細項,並且開發驅動伺服控制器的參數調整方法並以獨立介面實現,以及規劃光纖自動對位流程。經由單通道光纖實際對位測試,包括正弦掃描、螺旋掃描以及混合式掃描,本論文設計之自動對位控制系統都能夠顯現不錯的對位成果。
Optical fiber communication is the mainstream technology of modern wired communication network systems. High precision automatic assembly technology is indispensable during the manufacture of optical fiber components. The Stewart hexapod platform has the characteristics of high precision, rigid structure, excellent load capacity, and fast movement, which can fully meet the needs of quick and high precision fiber coupling. Compared with the commonly used stack fiber coupling machine, the Stewart platform has the advantages of high precision, high speed, and small volume in fiber coupling.

To achieve fast, automatic alignment of optical fiber coupling, the voice coil type Stewart hexapod platform developed by GMT adopts a two-stage structure, which reduces the size of the machine and uses a voice coil motor as the actuator. With the advantages of fast response and small size, a new structural type of Stewart hexapod platform is constructed.

This paper analyzes the kinematics, calculates the workspace for the aforementioned machine, integrates the human-machine interface, the upper controller, and the lower actuator, and designs a control system for automatic optical fiber alignment. The main purpose is to integrate the above-mentioned details, develop the parameter adjustment method of the drive servo controller, implement it with an independent interface, and plan the automatic fiber alignment process. In the actual alignment test of single-channel optical fiber, including sinusoidal scanning, spiral scanning, and hybrid scanning, the automatic alignment control system designed in this paper can show good alignment performance.
第一章 緒論 1
第二章 史都華六軸平台 5
第三章 史都華六軸平台在光纖對位的運動控制 17
第四章 馬達驅動與控制 27
第五章 光纖對位系統軟硬體架構及測試結果 55
第六章 結論及未來展望 85
[1] D. Stewart, “A platform with six degrees of freedom,” Proceedings of the Institution of
Mechanical Engineers, vol. 180, no. 1, pp. 371–386, 1965. [Online]. Available: https:
//doi.org/10.1243/PIME_PROC_1965_180_029_02
[2] K. H. Hunt, “Structural Kinematics of In-Parallel-Actuated Robot-Arms,” Journal of Mechanisms,
Transmissions, and Automation in Design, vol. 105, no. 4, pp. 705–712, 12 1983. [Online]. Available:
https://doi.org/10.1115/1.3258540
[3] D. C. H. Yang and T. W. Lee, “Feasibility Study of a Platform Type of Robotic Manipulators from a
Kinematic Viewpoint,” Journal of Mechanisms, Transmissions, and Automation in Design, vol. 106,
no. 2, pp. 191–198, 06 1984. [Online]. Available: https://doi.org/10.1115/1.3258578
[4] E. F. Fichter, “A stewart-platform based manipulator: General theory and practical construction,”
Int. J. Rob. Res., vol. 5, no. 2, p. 157–182, jul 1986. [Online]. Available: https://doi.org/10.1177/
027836498600500216
[5] P. Nanua and K. Waldron, “Direct kinematic solution of a stewart platform,” in Proceedings, 1989
International Conference on Robotics and Automation, 1989, pp. 431–437 vol.1.
[6] C. Nguyen, Z.-L. Zhou, S. Antrazi, and C. Campbell, “Efficient computation of forward kinematics
and jacobian matrix of a stewart platform-based manipulator,” in IEEE Proceedings of the SOUTH-
EASTCON ’91, 1991, pp. 869–874 vol.2.
[7] C. Nguyen, S. Antrazi, Z.-L. Zhou, and C. Campbell, “Experimental study of motion control and
trajectory planning for a stewart platform robot manipulator,” in Proceedings. 1991 IEEE International
Conference on Robotics and Automation, 1991, pp. 1873–1878 vol.2.
[8] Y. Zhang and F. Gao, “A calibration test of stewart platform,” in 2007 IEEE International Conference
on Networking, Sensing and Control, 2007, pp. 297–301.
[9] G. Du, P. Zhang, and D. Li, “Online robot calibration based on hybrid sensors using kalman filters,”
Robotics and Computer-Integrated Manufacturing, vol. 31, pp. 91–100, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736584514000635
[10] J. Fu, F. Gao, W. Chen, Y. Pan, and R. Lin, “Kinematic accuracy research of a novel six-degree-
of-freedom parallel robot with three legs,” Mechanism and Machine Theory, vol. 102, pp. 86–102,
2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094114X16300234
[11] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic Systems, 3rd ed. USA:
Addison-Wesley Longman Publishing Co., Inc., 1997.
[12] 蔡明發,
電動機控制與模擬, 1st, Ed. 新文京開發出版股份有限公司, 2021.
[13] S. Bennett and I. of Electrical Engineers, A History of Control Engineering, 1930-1955, ser. Control,
Robotics and Sensors. P. Peregrinus, 1993. [Online]. Available: https://books.google.com.tw/books?
id=VD\_b81J3yFoC
[14] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Journal of Dynamic
Systems, Measurement, and Control, vol. 115, no. 2B, pp. 220–222, 06 1993. [Online]. Available:
https://doi.org/10.1115/1.2899060
[15] A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules, 3rd ed. PUBLISHED BY
IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING
CO., 2009. [Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/p575
[16] C. Yu, Autotuning of PID Controllers: A Relay Feedback Approach. Springer London, 2006.
[Online]. Available: https://books.google.com.tw/books?id=HCjWqgIhHh0C
[17] K. Odo, E. Sochima Vincent, and C. Ogbuka, “A model-based pi controller tuning and design for field
oriented current control of permanent magnet synchronous motor,” vol. 14, pp. 35–41, 08 2019.
[18] K.K., “Tmc4671 datasheet,” TRINAMIC Motion Control GmbH Co., Jul. 2022. [Online].
Available: https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC4671-LA_
datasheet_rev2.08.pdf,(2022-07-14)
[19] STMicroelectronics, “Stm32h745/755,” 2022. [Online]. Available: https://www.st.com/en/
microcontrollers-microprocessors/stm32h745-755.html#overview,(2022-07-14)
[20] Arm Ltd., “Real-Time Operating System: API and RTX Reference Implementation,” 2022. [Online].
Available: https://www.keil.com/pack/doc/CMSIS/RTOS2/html/genRTOS2IF.html,(2022-07-14)
[21] thorlabs, “S1fc1310 - fabry-perot benchtop laser source, 1310 nm, 1.5 mw, fc/pc,” 2022. [Online].
Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=S1FC1310,(2022-07-14)
[22] ——, “Pm200 - touch screen power and energy meter console, 5.7” color lcd,” 2022. [Online].
Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=PM200,(2022-07-14)
(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *