帳號:guest(18.118.210.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李政安
作者(英文):Cheng-An Lee
論文名稱:基於機器學習之H.266/VVC畫面內編碼快速演算法
論文名稱(英文):Fast Algorithm for H.266/VVC Intra Coding Based on Machine Learning
指導教授:陳美娟
指導教授(英文):Mei-Juan Chen
口試委員:翁若敏
高立人
口試委員(英文):Ro-Min Weng
Lih-Jen Kau
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610523017
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:79
關鍵詞:VVCH.266
關鍵詞(英文):VVCH.266
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
多功能視訊編碼(H.266/VVC)即將成為最新一代之視訊編碼國際標準,能夠對超高解析度視訊進行高效率壓縮。H.266/VVC以四元樹與巢狀多元樹為編碼架構,針對四元樹進行巢狀的二元樹以及三元樹的多樣切割,也新增許多先進編碼工具,相較於前一代的高效率視訊編碼標準(HEVC/H.265)節省約40%的資料量,卻也增加相當多的編碼時間。本論文針對H.266/VVC的畫面內編碼,利用人眼視覺之最小可辨差異模型,計算出編碼單位內之視覺可辨差異像素的水平方向與垂直方向投影個數,利用隨機森林機器學習快速決策巢狀多元樹切割。實驗結果顯示本論文所提方法可有效加速H.266/VVC的畫面內編碼,同時維持良好的位元率與視訊品質。
Versatile Video Coding(H.266/VVC) will be the newest international video coding standard to effectively encode the ultra-high-definition video. The quad-tree with nested multi-type-tree(QT-MTT) structure in H.266/VVC provides various sizes of coding tree partitioning and allows the nested binary-tree (BT) split and ternary-tree (TT) split at each QT level. Furthermore, numerous advanced coding tools are equipped in the H.266/VVC encoder. Compared to High Efficiency Video Coding(HEVC/H.265), H.266/VVC reduces the data amount around 40%. However, the encoding time increases tremendously. For intra coding of H.266/VVC, this thesis utilizes the human vision model of Just Noticeable Difference(JND) to calculate the horizontal and vertical projections of visual difference pixels of JND within the coding unit. Fast MTT decisions are determined by random forest models of machine learning. Experimental results demonstrate that the proposed methods can effectively accelerate the encoding of H.266/VVC intra coding and maintain good bit-rate and video quality.
摘要 1
ABSTRACT 3
目錄 5
表目錄 7
圖目錄 9
第一章 緒論 13
1.1 多功能視訊編碼標準(H.266/VVC)介紹 13
1.1.1 預測架構 14
1.1.2 編碼單位(Coding Unit, CU) 15
1.1.3 畫面內預測(Intra Prediction) 19
1.2 研究動機與目的 23
1.3 論文架構 24
第二章 H.266/VVC畫面內編碼快速演算法之相關文獻回顧 25
2.1 H.266/VVC QT-MTT之相關快速演算法 25
2.2 QT-BT之相關快速演算法 31
第三章 所提出的畫面內編碼快速演算法 37
3.1 最小視覺可辨差異(JUST NOTICEABLE DIFFERENCE,JND) 37
3.2 隨機森林(RANDOM FOREST)介紹 42
3.3 MTT決策演算法 47
第四章 實驗結果 53
4.1 H.266/VVC測試影像序列 53
4.2 實驗參數設定 55
4.3 結果與討論 56
第五章 結論與未來展望 73
參考文獻 75

[1] J. Chen, Y. Ye, and S. Kim, “Algorithm description for versatile video coding and test model 7 (VTM 7),” Doc. JVET-P2002, version 1, November 2019.
[2] C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. J. Sullivan, “High efficiency video coding (HEVC) test model 16 (HM 16) Update 4 of Encoder Description,” Doc. JCTVC-V1002, October 2015.
[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, December 2012.
[4] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “JVET common test conditions and software reference configurations for SDR video,” Doc. JVET-K1010, July 2018.
[5] A. Ortega, and K. Ramchandran, “Rate-distortion methods for image and video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23-50, November 1998.
[6] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of HEVC standard,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1792-1801, December 2012.
[7] S. De-Luxán-Hernández, H. Schwarz, D. Marpe, and T. Wieg, “Fast line-based intra prediction for video coding,” IEEE International Symposium on Multimedia, Taichung, Taiwan, January 2019.
[8] https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20191008/Documents/Benjamin_Bross_Presentation.pdf.
[9] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, and G. Jiang, “Low complexity CTU partition structure decision and fast intra mode decision for versatile video coding,” IEEE Transactions on Circuits and Systems for Video Technology, Early Access, March 2019.
[10] Sang-Hyo Park and Je-Won Kang, “Context-based ternary tree decision method in versatile video coding for fast intra coding,” IEEE Access, vol.7, pp. 172597-172605, November 2019.
[11] Thomas Amestoy, Alexandre Mercat, Wassim Hamidouche, Daniel Menard, and Cyril Bergeron, “Tunable VVC frame partitioning based on lightweight machine learning,” IEEE Transactions on Image Processing, vol. 29, pp. 1313-1328, 2020.
[12] T. Fu, H. Zhang, F. Mu, and H. Chen, “Fast CU partitioning algorithm for H.266/VVC intra-frame coding,” IEEE International Conference on Multimedia and Expo, Shanghai, China, July 2019.
[13] Naima Zouidi, Fatma Belghith, Amina Kessentini, and Nouri Masmoudi, “Fast intra prediction decision algorithm for the QTBT structure,” IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems, May 2019.
[14] Z. Wang, S. Wang, J. Zhang, S. Wang, and S. Ma, “Effective quadtree plus binary tree block partition decision for future video coding,” in Proceedings of Data Compression Conference, Snowbird, UT, April 2017.
[15] T. Lin, H. Y. Jiang, J. Y. Huang, and P. C. Chang, “Fast binary tree partition decision in H.266/FVC intra coding,” IEEE International Conference on Consumer Electronics-Taiwan, Taichung, Taiwan, August 2018.
[16] Z. Jin, P. An, L. Shen, and J. Sun, “CNN oriented fast QTBT partition algorithm for JVET intra coding,” IEEE Visual Communications and Image Processing, FL, USA, December 2017.
[17] C. H. Chou and Y. C. Li, “A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 467-476, December 1995.
[18] Jie-Ru Lin and Mei-Juan Chen, “Fast depth coding of 3D-HEVC based on visual perception,” in Proceedings of 2016 Taiwan Academic Network Conference (TANET 2016), Taiwan, October 2016.
[19] J. R. Quinlan, “Induction of decision trees,” Machine Learning, pp. 81-106, 1986.
[20] L. Breiman, “Classification and regression trees,” Routledge, 2017.
[21] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, October 2001.
[22] J. Chen, Y. Ye, and S. Kim, “Algorithm description for versatile video coding and test model 4 (VTM 4),” Doc. JVET-M1002, version 2, March 2019.
[23] G. Bjontegaard, “Calculation of average PSNR differences between RD curves,” ITU-T SG16/Q6 Document, VCEG-M33, Austin, April 2001.
[24] G. Bjontegaard, “Improvements of the BD-PSNR model,” ITU-T SG16/Q6, Document, VCEG-AI11, Berlin, July 2008.
(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *