帳號:guest(3.129.71.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:張祐禎
作者(英文):YU-CHEN CHANG
論文名稱:沉積氧化鋅奈米顆粒於氧化亞銅奈米線應用於光電化學產氫之研究
論文名稱(英文):Fabrication of ZnO Nanoparticles on Cu2O Nanowires for Photoelectrochemical Hydrogen Generation
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:蔡志宏
黃俊元
口試委員(英文):Chih-Hung Tsai
Chun-Yuan Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610525006
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:47
關鍵詞:氧化亞銅氧化鋅光電化學產氫
關鍵詞(英文):Cu2OZnOPhotoelectrochemicalHydrogen Generation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏收藏:0
本研究藉由簡單的電氧化學合成方法成功的在銅片上製備出氫氧化銅奈米結構,並通過熱處理的方式使氫氧化銅轉變為氧化亞銅奈米線結構。並將此結構應用於光電化學產氫之研究上,隨後為了增加氧化亞銅於光電化學產氫的效率及產量,將氧化鋅利用浸泡法製備於氧化亞銅奈米線結構表面,使其形成PN結構的光電極應用在光電化學產氫之研究上。
在光電化學產氫之研究上,氧化亞銅是一個具有潛力的光電材料,藉由簡單並且低成本的方法製備出來的氧化亞銅應用於光電化學產氫的分析上,在電壓-0.6 V之下有1.8 mA/cm2的光電流反應。為了提升氧化亞銅之光電流,透過簡單的浸泡法在氧化亞銅上製備氧化鋅使其形成PN結構並用於光電化學產氫的分析上,在電壓-0.6 V之下有3.3 mA/cm2的光電流反應,提高了1.5 mA/cm2的光電流,幾乎是原本氧化亞銅的兩倍。
實驗的結果均證明氧化亞銅是一個很好且具有潛力的光電化學材料,可以在光電化學產氫這塊領域上擁有很好的結果。
The direct-grown p-type Cu(OH)2 nanowires on copper foil by Electrochemical Oxidation Process were fabricated via a facile and cost-effective template route for photoelectrochemical (PEC) hydrogen generation. The dense and curl-shaped copper oxide nanowires were carried out through thermal transformation of one-dimensional Cu(OH)2. And then, we propose a high stable and efficient Cu2O/ZnO photocathode for photoelectrochemical water splitting. Their morphology, structure and composition were examined with SEM, TEM, XRD, XPS and Raman , respectively.
For PEC characteristics illustrated that the high active photocathode of copper oxide nanowires can achieve the photocurrent of -1.8 mA/cm2 at a potential of -0.6 V,Fabrication ofZnO was deposited on Cu2O nanowire surface by simple solution route. Significantly, this novel core-shell Cu2O/ZnO nanowires illustrated excellent photocurrents of up to -3.3mA/cm2 at a potential of -0.6 V, which is almost two times larger than that of pristine Cu2O.
Our work demonstrated that the Cu2O is an effective electrochemical electrode material in photoelectrochemical.
致謝 Ⅰ
摘要 Ⅲ
Abstract Ⅳ
目錄 Ⅴ
第一章 緒論 1
1-1 前言 1
1-2 太陽能 2
1-3 氫能源 4
第二章 理論基礎與文獻回顧 5
2-1 光電化學 5
2-2 分解水產氫 6
2-3 光電化學分解水產氫 7
2-4 研究動機 8
第三章 實驗方法與步驟 11
3-1 氧化亞銅/氧化鋅製備流程 11
3-2 氧化亞銅/氧化鋅製備細項 12
3-3 電極材料特性分析 14
第四章 實驗結果與討論 25
4-1 氧化亞銅/氧化鋅應用於光電化學產氫 25
第五章 結論與未來展望 43
第六章 參考文獻 45
[1] 李怡靜,“葡萄糖修飾氧化鋅表面應用於染料敏化太陽能電池之研究”,國立東華大學光電工程研究所碩士論文,2015。
[2] 尤俊皓,“奈米結構之氧化亞銅應用於光電化學分解分產氫之研究”,國立東華大學光電工程研究所碩士論文,2013。
[3] https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89
[4] Lianos, P. (2017). Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental.
[5] Digdaya, I. A., Adhyaksa, G. W., Trześniewski, B. J., Garnett, E. C., & Smith, W. A. (2017). Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation. Nature Communications, 8, ncomms15968.
[6] Lin, Y. G., Hsu, Y. K., Lin, Y. C., & Chen, Y. C. (2016). Electrodeposited Fe 2 TiO 5 nanostructures for photoelectrochemical oxidation of water. Electrochimica Acta, 213, 898-903.
[7] Zang, Z., Nakamura, A., & Temmyo, J. (2013). Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Optics express, 21(9), 11448-11456.
[8] Lin, Y. G., Hsu, Y. K., Chen, S. Y., Chen, L. C., & Chen, K. H. (2011). Microwave-activated CuO nanotip/ZnO nanorod nanoarchitectures for efficient hydrogen production. Journal of Materials Chemistry, 21(2), 324-326.
[9] Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., & Thimsen, E. (2011). Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials, 10(6), 456-461.
[10] 林宏勳,“用電化學沉積法製成氧化亞銅/氧化鋅之異質型 p-n 太陽能電池之研究”,國立東華大學光電工程研究所碩士論文,2012。
[11] Lin, Y. G., Hsu, Y. K., Lin, Y. C., Chang, Y. H., Chen, S. Y., & Chen, Y. C. (2016). Synthesis of Cu 2 O nanoparticle films at room temperature for solar water splitting. Journal of colloid and interface science, 471, 76-80.
[12] Luo, J., Steier, L., Son, M. K., Schreier, M., Mayer, M. T., & Grätzel, M. (2016). Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano letters, 16(3), 1848-1857.
[13] Bai, J., Li, Y., Wang, R., Huang, K., Zeng, Q., Li, J., & Zhou, B. (2015). A novel 3D ZnO/Cu 2 O nanowire photocathode material with highly efficient photoelectrocatalytic performance. Journal of Materials Chemistry A, 3(45), 22996-23002.
[14] Yuan, W., Yuan, J., Xie, J., & Li, C. M. (2016). Polymer-mediated self-assembly of TiO2@ Cu2O core–shell nanowire array for highly efficient photoelectrochemical water oxidation. ACS applied materials & interfaces, 8(9), 6082-6092.
[15] Hou, J., Yang, C., Cheng, H., Jiao, S., Takeda, O., & Zhu, H. (2014). High-performance p-Cu 2 O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy & Environmental Science, 7(11), 3758-3768.
[16] Sharma, D., Upadhyay, S., Satsangi, V. R., Shrivastav, R., Waghmare, U. V., & Dass, S. (2014). Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode. The Journal of Physical Chemistry C, 118(44), 25320-25329.
[17] Luo, J., Steier, L., Son, M. K., Schreier, M., Mayer, M. T., & Grätzel, M. (2016). Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano letters, 16(3), 1848-1857.
[18] Hsu, Y. K., Yu, C. H., Chen, Y. C., & Lin, Y. G. (2013). Fabrication of coral-like Cu 2 O nanoelectrode for solar hydrogen generation. Journal of Power Sources, 242, 541-547.
[19] 鄭信民,林麗娟, 工業材料雜誌, 2003, 201, 109.
[20] 羅聖全,工業材料雜誌, 2003,201 ,90
[21] 俞姿宇 (2016). "X射線光電子能譜儀." 儀器分析.
[22] 張立信. (2012). 表面化學分析技術. 國家奈米元件實驗室奈米通訊, 19(4), 17-23.
[23] Gelderman, K., Lee, L., & Donne, S. W. (2007). Flat-band potential of a semiconductor: using the Mott–Schottky equation. J. Chem. Educ, 84(4), 685.
[24] Macdonald, J. R., & Johnson, W. B. (2005). Fundamentals of impedance spectroscopy. Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition, 1-26.
[25] https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/
[26] 張立信. (2012). 表面化學分析技術. 國家奈米元件實驗室奈米通訊, 19(4), 17-23.
[27] Hsu, Y. K., Yu, C. H., Chen, Y. C., & Lin, Y. G. (2013). Synthesis of novel Cu 2 O micro/nanostructural photocathode for solar water splitting. Electrochimica Acta, 105, 62-68.
[28] Hsu, Y. K., Chen, Y. C., & Lin, Y. G. (2015). Novel ZnO/Fe2O3 core–shell nanowires for photoelectrochemical water splitting. ACS applied materials & interfaces, 7(25), 14157-14162.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *