帳號:guest(3.12.154.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許庭維
作者(英文):Ting-Wei Hsu
論文名稱:氧化石墨烯和氟化石墨烯利用於雷射背電極燒結法之太陽能電池研究
論文名稱(英文):Graphene oxide and fluorinated graphene used in solar cell research of laser fired contact
指導教授:林楚軒
指導教授(英文):Chu-Hsuan Lin
口試委員:王智明
高宗聖
口試委員(英文):Chih-Ming Wang
Zong-Sheng Gao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610525009
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:73
關鍵詞:PERC太陽能電池雷射燒結BSF層氧化石墨烯氟化石墨烯
關鍵詞(英文):PERC solar celllaser fired contactBSF layergraphene oxidefluorinated graphene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
本篇論文將PERC太陽能電池元件使用雷射雕刻方式來促進鋁與矽結合,形成BSF層,提高效率。
本實驗室有研究石墨烯的衍生物,石墨烯是由三維結構石墨撥出單層二維結構石墨烯,其特性第三章會做介紹,作為太陽能電池輔助和未來方向。
本篇的太陽能電池以業界PERC為基準,將未開洞的試片去濺鍍鋁,再進行雷射開洞,可藉由雷射光將鋁打穿鈍化層與矽幾乎完全接觸並擴散形成BSF層,測試之後確實效率有明顯提升,如此低溫製程可以有如此高的效率,值得後續持續研究,也能避免過高溫的擴散過程對氧化石墨烯產生的破壞。
隨後,將目標放在雷射參數上,藉由用雷射燒結法打穿SiON鈍化層,讓鋁進入與矽做結合,找到一個最佳數值。
上面製程確實可行之後,在PERC基板跟鋁之間加入氧化石墨烯,氧化石墨烯特性具有固定負電荷,可排斥少數載子電子,降低復合率,將效率再提高。
In this study, PERC solar cell components are laser-fired contact to promote the combination of aluminum and silicon to form a BSF layer for improved efficiency.
This laboratory has studied the derivatives of graphene. Graphene is a single-layer two-dimensional structure graphene extracted from three-dimensional structure graphite. Its characteristics will be introduced in Chapter 3 as solar cell auxiliary and future direction.
The solar cell of this article is based on the industry PERC, and the unopened test piece is sputtered with aluminum, and then the laser fired contact. The aluminum can be penetrated through the passivation layer to almost completely contact with the silicon and diffuse to form the BSF layer.
After the test, the efficiency is obviously improved. Such a low-temperature process can have such high efficiency, and it is worthwhile to continue the research in the future, and can also avoid the damage of the graphene oxide caused by the high-temperature diffusion process.
Subsequently, the target is placed on the laser parameters, and the passivation of the SiON passivation layer by laser sintering is used to combine the aluminum into the silicon to find an optimum value.
After the above process is feasible, the graphene oxide is added between the PERC substrate and the aluminum. The graphene oxide has a fixed negative charge which can repel a few carrier electrons, reduce the recombination rate, and further improve the efficiency.
Keywords: PERC solar cell、laser fired contact、BSF layer、graphene oxide、fluorinated graphene
致謝 I
摘要 III
Abstract IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1前言 1
1.2研究動機 3
1.3論文架構 4
第二章 原理及文獻探討 5
2.1 太陽能電池運作原理 5
2.1.1 太陽能電池結構 5
2.1.2 光伏效應 5
2.1.3半導體中復合過程 8
2.1.4 太陽能電池效率相關參數 9
2.2 太陽能電池鈍化效果 12
2.2.1鋁背電場(Back Surface Field) 12
2.2.3 鈍化層(Passivation Layer) 13
2.2.4氧化層電荷 14
第三章 石墨烯特性與製程介紹 17
3.1 氧化石墨烯特性 17
3.1.1氧化石墨烯結構與特性說明 17
3.1.2氧化石墨烯製程 18
3.2 氟化石墨烯特性 19
3.2.1氟化石墨烯結構與特性說明 19
3.2.2氟化石墨烯製程 20
3.3 少數載子Lifetime分析 21
3.4 Lifetime樣品製程 22
3.5 製程儀器及軟體介紹 23
3.5.1 快速熱退火(RTA) 23
3.5.2 載子壽命(Lifetime)儀器軟體 25
3.6 氧化石墨烯及氟化石墨烯實驗結果 28
3.6.1 氧化石墨烯實驗結果 28
3.6.2 氟化石墨烯實驗結果 32
3.6.3 氟化石墨烯缺點探討 35
第四章 PERC太陽能電池製作 51
4.1 太陽能電池製程 51
4.2 實驗流程 53
4.3實驗結果與討論 55
4.3.1 探討兩種不同PERC轉換效率 55
4.3.2 未開洞的PERC基板太陽能電池雷射燒結參數 57
4.3.3確認雷射效果BSF層形成 60
4.3.4加入氧化石墨烯的太陽能電池轉換效率 63
第五章 總結與未來方向 69
5.1 總結 69
5.2 未來方向 70
參考文獻 71

[1-1] 台電系統歷年發購電量, http://www.taipower.com.tw/TC/page.aspx?mid=43&cid=29&cchk=34db42ba-62b1-4684-9fc8-59881779ac23
[1-2] https://zh.wikipedia.org/wiki/太阳能电池(取自維基百科;圖片由美國國家再生能源實驗室提供)
[1-3] https://pv.energytrend.com.tw/knowledge/20141204-10030.html
[1-4] Suk, J. W., Piner, R. D., An, J., & Ruoff, R. S. (2010). Mechanical properties of monolayer graphene oxide. ACS nano, 4(11), 6557-6564.
[1-5] http://technews.tw/2017/01/19/perc-battery-capacity/
[1-6] Hsu, W. T., Tsai, Z. S., Chen, L. C., Chen, G. Y., Lin, C. C., Chen, M. H., ... & Lin, C. H. (2014). Passivation ability of graphene oxide demonstrated by two-different-metal solar cells. Nanoscale research letters, 9(1), 696.
[2-1] PVCDROM, http://pveducation.org/pvcdrom/solar-cell-structure
[2-2]黃鈺傑(2017)“氧化石墨烯之負電荷於PN單晶矽太陽能電池之鈍化應用”(未出版之碩士論文) 國立東華大學光電工程學系研究所,花蓮縣
[2-3] Narasimha, S., Rohatgi, A., & Weeber, A. W. (1999). An optimized rapid aluminum back surface field technique for silicon solar cells. IEEE Transactions on Electron Devices, 46(7), 1363-1370.
[2-4] Von Roos, O. (1978). A simple theory of back surface field (BSF) solar cells. Journal of Applied Physics, 49(6), 3503-3511.
[2-5] Menous, I., Mahiou, L., Tadjine, R., Touati, A., & Lefgoum, A. (2008). Silicon nitride film for solar cells. Renewable Energy, 33(10), 2289-2293.
[2-6] 國家實驗研究院http://www.ndl.org.tw/docs/devices/CF/T3_B.pdf

[2-7] Deal, B. E. (1980). Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Transactions on Electron Devices, 27(3), 606-608.
[3-1] He, H., Klinowski, J., Forster, M., & Lerf, A. (1998). A new structural model for graphite oxide. Chemical physics letters, 287(1-2), 53-56.
[3-2] Kumar, H. V., Woltornist, S. J., & Adamson, D. H. (2016). Fractionation and characterization of graphene oxide by oxidation extent through emulSiON stabilization. Carbon, 98, 491-495.
[3-3] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565.
[3-4] Xu, Y., Bai, H., Lu, G., Li, C., & Shi, G. (2008). Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130(18), 5856-5857.
[3-5] Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
[3-6] Samarakoon, D. K., Chen, Z., Nicolas, C., & Wang, X. Q. (2011). Structural and electronic properties of fluorographene. Small, 7(7), 965-969.
[3-7] Nebogatikova, N. A., Antonova, I. V., Prinz, V. Y., Volodin, V. A., Zatsepin, D. A., Kurmaev, E. Z., ... & Cholakh, S. O. (2014). Functionalization of graphene and few-layer graphene films in an hydrofluoric acid aqueous solution. Nanotechnologies in Russia, 9(1-2), 51-59.
[3-8] Nair, R. R., Ren, W., Jalil, R., Riaz, I., Kravets, V. G., Britnell, L., ... & Katsnelson, M. I. (2010). Fluorographene: A two‐dimenSiONal counterpart of Teflon. small, 6(24), 2877-2884.
[3-9] Antonova, I. V., & Nebogatikova, N. A. (2017). Fluorinated Graphene Dielectric and Functional Layers for Electronic Applications. In Graphene Materials-Advanced Applications. InTech.
[3-10] 林莛孝(2017)“氟化石墨烯特性之研究”(碩士論文) 國立東華大學光電工程學系研究所,花蓮縣
[3-11] Robinson, J. T., Burgess, J. S., Junkermeier, C. E., Badescu, S. C., Reinecke, T. L., Perkins, F. K., ... & Snow, E. S. (2010). Properties of fluorinated graphene films. Nano letters, 10(8), 3001-3005.
[4-1] http://www.tsecpv.com/zh-tw/solar_knowledge/index/zero_house_02
[4-2] 張悳崴(2015) “鈍化射極與背面接觸多晶太陽能電池射極最佳化之研究”(碩士論文) 中華大學電機工程學系碩士班 新竹縣
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *