帳號:guest(18.225.254.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林柏宇
作者(英文):Bo-Yu Lin
論文名稱:氧化鉬薄膜應用於矽偵測器與太陽能電池
論文名稱(英文):Silicon-Based Detectors And Solar Cells With Molybdenum Oxide Thin Film
指導教授:林楚軒
指導教授(英文):Chu-Hsuan Lin
口試委員:王智明
高宗聖
口試委員(英文):Chih-Ming Wang
Tsung-Sheng Kao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610525011
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:52
關鍵詞:太陽電池光偵測器氧化鉬局部背鈍化太陽能電池
關鍵詞(英文):Solar cellphotodetectorMolybdenum oxidePassived Emitter and Rear Cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
本論文主要探討將氧化鉬(MoOX)應用於局部背鈍化太陽能電池(Passivated Emitter and Rear Cell, PERC),希望透過氧化鉬的寬能隙、高功函數等特性來改善太陽能電池的效率。一般矽晶太陽能電池背部會有鈍化層,如氮氧化矽(SiON)或氧化鋁(Al2O3),另外我們實驗室也研究了另一種可能的鈍化材料:氧化石墨烯(Graphehe Oxide, GO)作為鈍化層,然而這些鈍化層不導電,所以一般會用雷射開洞使其上下的矽與金屬得以相接。不過雷射開洞的面積有限,也會造成電阻,所以商用太陽電池是藉由高溫來引起金屬在矽內的擴散,但這樣的後段高溫製程也會造成太陽電池的效率衰退。因此,有文獻指出,可以在矽與金屬間引入氧化鉬,藉由其高功函數來幫助導電,就無需額外的高溫擴散製程。而本實驗室的氧化石墨烯水溶液滴於基板背面,烤乾後的氧化石墨烯本身就有空隙,可讓氧化鉬直接與矽基板接觸而不用再使用雷射,減少了雷射對基板的傷害。我們首先將氧化鉬應用於偵測器上並測量其電流電壓曲線,得知氧化鉬確實能幫助導電,提高響應度。接著取業界所購買的太陽能電池基板,並把氧化鉬沉積於基板背面,再鍍上鋁作為正負電極,即完成太陽能電池,目前背部僅氧化石墨烯的太陽電池,再蓋上氧化鉬後尚未見到效率提升,推測可能氧化鉬厚度過厚影響導電,有待厚度減薄後,來得到類似光偵測器上的優異表現。
This thesis mainly discusses the application of molybdenum oxide (MoOX) to Passived Emitter and Rear Cell (PERC), hoping to improve efficiency through the wide band gap and high work function of MoOX. At present, the passivation layer on silicon solar cell is silicon oxynitride (SiON) or aluminum oxide (Al2O3). In addition, we also research a possible material, Graphene Oxide (GO), as passivation layer. These passivation layers are not conductive, so passivation layers are usually partially opened to make underneath metal contact with silicon directly. However, the laser-opened holes have a limited area and also cause contact resistance. Therefore, diffusion of metal in the silicon by high temperature is needed in commercial solar cells. However, such a high-temperature process will also cause the efficiency degradation. It is possible to introduce MoOX between silicon and metal to help carrier conduction utilizing its property of high work function to avoid high temperature diffusion process. In our laboratory, the aqueous solution of GO was dropped on the back side of the substrate, and there are holes between GO flakes, which allows the MoOX to directly contact with the substrate without using laser firing and reduces the damage of the laser to the silicon. We first used MoOX to the detector and measured the current-voltage curve to confirm that MoOX helps conduct carriers and improve responsivity. Then MoOX was then applied to solar cells. At present, we didn’t demonstrate a higher efficiency on solar cell based on the combination of GO and MoOX. We speculated that the thickness of the molybdenum oxide may be too thick to affect the conductivity, and it may be necessary to obtain a superior performance on a photodetector after the thickness is reduced.
致謝 III
摘要 V
Abstract VII
目錄 IX
圖目錄 X
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 4
第二章 元件及材料介紹 5
2.1 光偵測器 5
2.2 太陽能電池 7
2.2.1 簡介 7
2.2.2 局部背部鈍化太陽能電池(PERC) 10
2.3 氧化鉬(Molybdenum oxide, MoOX, x<3) 13
2.4 氧化石墨烯(Graphene Oxide) 17
2.5 其他材料 18
第三章 應用於矽偵測器 19
3.1 實驗流程 19
3.2 結果探討 21
3.2.1 測量方式 21
3.2.2 測量結果 23
第四章 應用於太陽能電池 31
4.1 實驗流程 31
4.2 結果探討 34
第五章 高速偵測器 37
5.1 簡介 37
5.2 實驗流程 39
5.3 電特性量測 43
第六章 總結與未來方向 45
6.1 總結 45
6.2 未來方向 46
參考文獻 47
[1-1] 歷年發電量及結構 - 台灣電力股份有限公司
http://www.taipower.com.tw/tc/chart/a01_電力供需資訊_電源開發規劃_歷年發電量及結構.html
[1-2] Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677.
[1-3] Best Research-Cell Efficiencies
https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[1-4] Blakers, A. W., Wang, A., Milne, A. M., Zhao, J., & Green, M. A. (1989). 22.8% efficient silicon solar cell. Applied Physics Letters, 55(13), 1363-1365.
[1-5] Zhao, J., Wang, A., & Green, M. A. (1990, May). 24% efficient PERL structure silicon solar cells. In Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE (pp. 333-335). IEEE.
[1-6] Zhao, J., Wang, A., & Green, M. A. (1999). 24· 5% Efficiency silicon PERT cells on MCZ substrates and 24· 7% efficiency PERL cells on FZ substrates. Progress in photovoltaics: research and applications, 7(6), 471-474.
[1-7] Battaglia, C., Yin, X., Zheng, M., Sharp, I. D., Chen, T., McDonnell, S., ... & Wallace, R. M. (2014). Hole selective MoO x contact for silicon solar cells. Nano letters, 14(2), 967-971.
[1-8] 黃文哲,“反式結構之透明有機太陽能電池”,國立交通大學碩士論文,2009。
[1-9] Bullock, J., Samundsett, C., Cuevas, A., Yan, D., Wan, Y., & Allen, T. (2015). Proof-of-concept p-type silicon solar cells with molybdenum oxide local rear contacts. IEEE Journal of Photovoltaics, 5(6), 1591-1594.
[1-10] 2017年PERC電池產能增至25GW,產出總量倍增
https://www.energytrend.com.tw/research/20170119-14307461.html
[1-11] 2018年先進電池技術趨勢 PERC單晶優於PERC多晶、雙面漸漸取代單面
https://news.cnyes.com/news/id/4034043
[2-1] 黃昭凱,“奈米等級PN 接面二極體”,國立交通大學碩士論文,2007。
[2-2] 繆家鼎、徐文娟、牟同升(2003)。光電技術。取自
https://books.google.com.tw/books?id=5WuybvqNSNIC&printsec=frontcover&hl=zh-TW&source=gbs_ge_summary_r&cad=0
[2-3] 姚奕丞, “奈米金應用於鍺、矽光偵測器之響應提升研究” ,國立東華大學碩士論文,2016。
[2-4] 太陽能分類 - 國家能源科技人才培育計畫
https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
[2-5] 淺談矽晶太陽能電池 - 國家奈米元件實驗室
http://www.ndl.org.tw/docs/publication/24_1/pdf/E1.pdf
[2-6] Fill Factor | PVEducation
https://www.pveducation.org/pvcdrom/solar-cell-operation/fill-factor
[2-7] 光伏電池的 I-V 特性測試原理與 LabVIEW 分析程式碼 - National Instruments
http://www.ni.com/white-paper/7230/zht/
[2-8] Bivour, M., Messmer, C., Neusel, L., Zähringer, F., Schön, J., Glunz, S. W., & Hermle, M. (2017). Principles of carrier-selective contacts based on induced junctions. In 33rd Eur. Photovolt. Sol. Energy Conf (pp. 348-352).
[2-9] Bo-Yu Lin, Chu-Hsuan Lin*, “Current Enhancement by Molybdenum Trioxide for Possible Application on Crystalline Silicon Solar Cells,” in Proceedings of 2017 The 12th National Conference on Hydrogen Energy and Fuel Cell (HEFC 2017), Hualien, Taiwan, December 12-13, 2017. (no. O-C-003)
[2-10] Cuevas, A., Fossum, J. G., & Young, R. T. (1985). Influence of the dopant density profile on minority-carrier current in shallow, heavily doped emitters of silicon bipolar devices. Solid-state electronics, 28(3), 247-254.
[2-11] Hoex, B., Heil, S. B. S., Langereis, E., Van de Sanden, M. C. M., & Kessels, W. M. M. (2006). Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al 2 O 3. Applied Physics Letters, 89(4), 042112.
[2-12] Fossum, J. G., Lindholm, F. A., & Shibib, M. A. (1979). The importance of surface recombination and energy-bandgap arrowing in pn-junction silicon solar cells. IEEE Transactions on Electron Devices, 26(9), 1294-1298.
[2-13] Blakers, A. W., & Green, M. A. (1981). 678‐mV open‐circuit voltage silicon solar cells. Applied Physics Letters, 39(6), 483-485.
[2-14] Green, M. A., Blakers, A. W., Shi, J., Keller, E. M., & Wenham, S. R. (1984). 19.1% efficient silicon solar cell. Applied Physics Letters, 44(12), 1163-1164.
[2-15] TSEC
http://www.tsecpv.com/zh-tw/solar_knowledge/index/zero_house_02
[2-16] MoO3 | Molybdenum(VI) oxide 99.99% trace metals basis | Sigma-Aldrich https://www.sigmaaldrich.com/catalog/product/aldrich/203815?lang=en®ion=TW
[2-17] Huang, P. R., He, Y., Cao, C., & Lu, Z. H. (2014). Impact of lattice distortion and electron doping on α-MoO3 electronic structure. Scientific Reports, 4, 7131.
[2-18] Bullock, J., Cuevas, A., Allen, T., & Battaglia, C. (2014). Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells. Applied Physics Letters, 105(23), 232109.
[2-19] Heyns, J. B. B., Cruywagen, J. J., & Kinkead, S. A. (1986). Yellow molybdenum (VI) oxide dihydrate. Inorganic Syntheses, Volume 24, 191-192.
[2-20] Vasilopoulou, M., Palilis, L. C., Georgiadou, D. G., Kennou, S., Kostis, I., Davazoglou, D., & Argitis, P. (2012). Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer. Applied Physics Letters, 100(1), 11.
[2-21] Sian, T. S., & Reddy, G. B. (2004). Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Solar energy materials and solar cells, 82(3), 375-386.
[2-22] Kröger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., & Kahn, A. (2009). P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide. Organic Electronics, 10(5), 932-938.
[2-23] Irfan, Ding, H., Gao, Y., Small, C., Kim, D. Y., Subbiah, J., & So, F. (2010). Energy level evolution of air and oxygen exposed molybdenum trioxide films. Applied Physics Letters, 96(24), 116.
[2-24] Kanai, K., Koizumi, K., Ouchi, S., Tsukamoto, Y., Sakanoue, K., Ouchi, Y., & Seki, K. (2010). Electronic structure of anode interface with molybdenum oxide buffer layer. Organic Electronics, 11(2), 188-194.
[2-25] Cho, S. W., Piper, L. F. J., DeMasi, A., Preston, A. R. H., Smith, K. E., Chauhan, K. V., ... & Jones, T. S. (2010). Soft X-ray spectroscopy of C60/copper phthalocyanine/MoO3 interfaces: role of Reduced MoO3 on energetic band alignment and improved performance. The Journal of Physical Chemistry C, 114(42), 18252-18257.
[2-26] Bao, Q. Y., Yang, J. P., Li, Y. Q., & Tang, J. X. (2010). Electronic structures of MoO 3-based charge generation layer for tandem organic light-emitting diodes. Applied physics letters, 97(6), 172.
[2-27] Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., & Kahn, A. (2012). Transition metal oxides for organic electronics: energetics, device physics and applications. Advanced Materials, 24(40), 5408-5427.
[2-28] Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49.
[2-29] Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
[2-30] Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
[2-31] Dong, X., Su, C. Y., Zhang, W., Zhao, J., Ling, Q., Huang, W., ... & Li, L. J. (2010). Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 12(9), 2164-2169.
[2-32] Guo, Y., Peng, F., Wang, H., Huang, F., Meng, F., Hui, D., & Zhou, Z. (2018). Intercalation Polymerization Approach for Preparing Graphene/Polymer Composites. Polymers, 10(1), 61.
[2-33] 杜邦太陽能解決方案於2017 SNEC太陽能展會推出新一代正銀導電漿料Solamet® PV20A | 杜邦台灣
http://www.dupont.com.tw/products-and-services/solar-photovoltaic-materials/media/press-releases/20170419-pv-snec-2017-pr.html
[5-1] Hsiao, H. T., Yao, I. C., Ni, I. C., Tzeng, S. D., Lin, W. F., Lin, B. Y., & Lin, C. H. (2018). Gold-Nanoparticle-Coated Ge MIS Photodiodes. IEEE Journal of the Electron Devices Society, 6(1), 95-99.
[5-2] Maeda, T., Ikeda, K., Nakaharai, S., Tezuka, T., Sugiyama, N., Moriyama, Y., & Takagi, S. (2005). High mobility Ge-on-insulator p-channel MOSFETs using Pt germanide Schottky source/drain. IEEE electron device letters, 26(2), 102-104.
[5-3] Yu, D. S., Chin, A., Liao, C. C., Lee, C. F., Cheng, C. F., Li, M. F., ... & McAlister, S. P. (2005). Three-dimensional metal gate-high-/spl kappa/-GOI CMOSFETs on 1-poly-6-metal 0.18-/spl mu/m Si devices. IEEE electron device letters, 26(2), 118-120.
[6-1] Mews, M., Korte, L., & Rech, B. (2016). Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 158, 77-83.
[6-2] 黃鈺傑, “氧化石墨烯之負電荷於PN單晶矽太陽能電池之鈍化應用” ,國立東華大學碩士論文,2015。
[6-3] Bullock, J., Yan, D., Cuevas, A., Wan, Y., & Samundsett, C. (2015). n-and p-typesilicon Solar Cells with Molybdenum Oxide Hole Contacts. Energy Procedia, 77, 446-450.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *