帳號:guest(18.222.118.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許曉壟
作者(英文):Shiao-Long Shiu
論文名稱:石墨烯於染料敏化太陽能電池膠態電解質及對電極之研究
論文名稱(英文):Investigation of Graphene-Based Gel-State Electrolytes and Counter Electrodes for Dye-Sensitized Solar Cells
指導教授:蔡志宏
指導教授(英文):Chih-Hung Tsai
口試委員:游源祥
莊沁融
口試委員(英文):Yuan-Hsiang Yu
Chin-Jung Chuang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610525012
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:96
關鍵詞:膠態電解質對電極白金石墨烯過渡金屬
關鍵詞(英文):dye-sensitized solar cellsGel-electrolytecounter electrodeplatiniumgraphenetransition metal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏收藏:0
  由於染料敏化太陽能電池為一種製程簡單、富有可撓性、且成本低廉的新型薄膜太陽能電池,因此有許多研究團隊投入於染料敏化太陽能電池的研究。染料敏化太陽能電池結構由二氧化鈦工作電極、染料、電解質和白金對電極所組成,然而液態電解質存在密封不易、具腐蝕性和穩定性不足等問題,加上白金對電極成本高昂,導致染料敏化太陽能電池商業化發展困難。
本研究主要分為三個部分,第一部份為添加石墨烯、樟腦磺酸、以及鋰鹽於染料敏化太陽能電池PMMA膠態電解質與元件效率關係之研究,並製作成元件後進行光電轉換效率、阻抗頻譜、入射光子-電子轉換效率分析、以及元件老化等測試進行探討,當添加添加0.05M鋰鹽、0.05M樟腦磺酸及1.3mg/ml石墨烯於膠態電解液時,元件效率達到最高的8.46%。
  第二部分是將石墨烯與二氧化鈦奈米顆粒添加於電解液中行成膠態電解質,並利用膠態電解質製作成太陽能電池,進行光電轉換效率、阻抗頻譜、入射光子-電子轉換效率分析、以及元件老化等測試進行探討,當添加重量百分比10%二氧化鈦奈米顆粒及1.3mg/ml石墨烯於電解液時,其元件效率達到最高的8.87%。
  第三部分以還原氧化石墨烯/鐿大環錯合物複合材料製備對電極,分析其表面形貌、元素成分和電化學特性,並將rGO/Yb複合材料應用於染料敏化太陽能電池,分析不同比例鋅大環錯合物對元件效率和元件阻抗的影響。實驗結果顯示,以rGO/Yb(1:10) 作為對電極,其DSSC元件轉換效率達到7.9%,優於白金對電極。
Dye-Sensitized Solar Cells (DSSCs) have attracted much attention due to their various merits, such as relatively high efficiencies, simple device structures, easy fabrication, and low cost. These features have made DSSCs attractive for solar energy applications in the face of increasing energy and environmental challenges. However, the problems of electrolyte's sealing, corrosion, thus lack of stability and the cost of Pt isrelatively expensive limit the commercialization of DSSCs.
There are three parts in this study. First, we added the graphene, the lithium bis(trifluoromethanesulphonyl)imide, and camphorsulfonic acid into PMMA gel-based electrolytes, and the properties of the DSSCs were analyzed by J–V, IPCE, electrochemical impedance, and stability measurements. The highest power conversion efficiency of 8.46% was recorded for quasi-solid-state DSSCs with 0.05M Li bis, 0.05M CAS and 1.3mg/ml graphene .
Second, the TiO2 nanoparticles and the graphene are employed to solidify an acetonitrile-based liquid electrolyte for DSSCs, and the properties of the DSSCs were analyzed by J–V, IPCE, electrochemical impedance, and stability measurements. The highest power conversion efficiency of 8.87% was recorded for quasi-solid-state DSSCs with 10.0 wt% TiO2 nanoparticles and 1.3mg/ml graphene as the gelator.
Third, nanocomposite materials of GO and marcrocyclic Yb complex were prepared. The electrode properties and device efficiency were analyzed. The DSSCs fabricated with the rGO/Yb (1:10) CE exhibited a power conversion efficiency of 7.9%, which was higher than that of the Pt counter electrode.
致謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章、 前言 1
1.1能源現況 1
1.1.1 太陽能源 3
1.2 太陽能電池種類及其發展 6
1.2.1 染料敏化太陽能電池 9
1.3 實驗儀器及研究原理 11
1.3.1 太陽光模擬器(Solar Simulator) 12
1.3.2 電化學分析儀(Electric chemistry analyzer) 15
1.3.3 量子效率分析儀(Quantum efficiency,QE) 18
1.3.4 場發射電子顯微鏡(Field emission scanning electron microscope,FE-SEM) 19
1.3.5 X光能量散佈光譜儀(Energy dispersive X-ray spectrometers,EDS) 20
1.3.6 拉曼光譜分析儀(Raman) 21
1.4 參考文獻 23
第二章、 石墨烯添加於膠態電解質染料敏化太陽能電池之研究 25
2.1 緒論及文獻探討 25
2.2 實驗步驟 27
2.2.1 材料製備 27
2.2.2 電極製作 28
2.2.3 元件製作 29
2.2.4 材料分析及實驗方法 29
2.3 結果與討論 30
2.3.1 材料奈米結構分析 30
2.3.2 石墨烯膠態電解質元件特性分析 31
2.3.3 樟腦磺酸添加於石墨烯膠態電解質元件特性分析 35
2.3.4 鋰鹽添加於石墨烯膠態電解質元件特性分析 39
2.3.5 複合型膠態電解質元件特性分析 43
2.3.6 老化測試 47
2.4 結論 48
2.5 參考文獻 49
第三章、 石墨烯添加於二氧化鈦奈米顆粒膠態電解質染料敏化太陽能電池之研究 51
3.1 緒論及文獻探討 51
3.2 實驗步驟 53
3.2.1 材料製備 53
3.2.2 電極製作 54
3.2.3 元件製作 55
3.2.4 材料分析及實驗方法 55
3.3 結果與討論 56
3.3.1 材料奈米結構分析 56
3.3.2 二氧化鈦奈米顆粒膠態電解質元件特性分析 57
3.3.3 石墨烯添加於二氧化鈦膠態電解質元件特性分 62
3.3.4 老化測試 67
3.4 結論 68
3.5 參考文獻 69
第四章、 還原氧化石墨烯/鐿大環錯合物複合材料於染料敏化太陽能電池對電極之研究 71
4.1 緒論及文獻探討 71
4.2 實驗步驟 72
4.2.1 材料製備 72
4.2.2 電極製作 75
4.2.3 元件製作 76
4.2.4 材料分析及實驗方法 76
4.3 結果與討論 77
4.3.1 材料奈米結構分析 77
4.3.2 結構鑑定分析 83
4.3.4 元件特性量測 88
4.4 結論 92
4.5 參考文獻 93
第五章、 總結論 95

第一章參考文獻
[1]BP-co, "BP Statistical Review of World Energy 2017"
[2]維基百科,"再生能源"
[3]IRENA," 2017 年再生能源發電成本"
[4]台灣電力公司," 再生能源發電概況";Retrieved from :
https://www.taipower.com.tw/tc/page.aspx?mid=204&cid=154&cchk=0a47a6ed-e663-447b-8c27-092472d6dc73
[5]沈輝,《太陽能光電技術》,五南圖書,2008
[6]Kiehl, J. T. and Trenberth, K. E. (1997). "Earth's Annual Global Mean Energy Budget". Bulletin of the American Meteorological Association 78: 197-208.
[7]莊秉元,"染料敏化太陽能電池元件結構及材料特性的研究",國立東華大學光電工程研究所碩士論文,2014
[8]https://zh.wikipedia.org/wiki/File:Solar_Spectrum.png
[9]施純鈞,"石墨烯奈米複合材料於染料敏化太陽能電池對電極之研究",國立東華大學光電工程研究所碩士論文,2017
[10]Guechi, A., Chegaar, M., & Aillerie, M. (2013). Air mass effect on the performance of organic solar cells. Energy Procedia, 36, 714-721.
[11]Arvesen, J. C., Griffin, R. N., & Pearson, B. D. (1969). Determination of extraterrestrial solar spectral irradiance from a research aircraft. Applied Optics, 8(11), 2215-2232.
[12]NERL, "Best Research-Cell Efficiencies;Retrieved from :https://www.nerl.gov/pv/.
[13]Putseiko, E. K., & Terenin, A. N. (1949). Photosensitization of the internal photoeffect in zinc oxide and other semiconductors by adsorbed dyes. Zhurnal Fizicheskoi Khimii, 23, 676.
[14]Tsubomura, H., Matsumura, M., Nomura, Y., & Amamiya, T. (1976). Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 261(5559), 402.
[15]O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737.
[16]Li, S. L., Jiang, K. J., Shao, K. F., & Yang, L. M. (2006). Novel organic dyes for efficient dye-sensitized solar cells. Chemical Communications, (26), 2792-2794.
[17]Kohle, O., Grätzel, M., Meyer, A. F., & Meyer, T. B. (1997). The photovoltaic stability of, bis (isothiocyanato) rlutheniurn (II)‐bis‐2, 2′ bipyridine‐4, 4′‐dicarboxylic acid and related sensitizers. Advanced Materials, 9(11), 904-906..
[18]陳信宏,"染料敏化太陽能電池近期發展",光連雙月刊2009. 11.No.84
[19]Grätzel, M. (2001). Photoelectrochemical cells. nature, 414(6861), 338.
[20]Applied optic, "ASTM / IEC / JIS Standards"
[21]鄭信民,"場發射掃描式電子顯微鏡分析技術應用簡介",Industrial Material,2003
[22]林智仁,"場發射式掃描式電子顯微鏡簡介",Industrial Material,2002
[23]施正雄,《儀器分析原理及應用》,五南圖書,2014
[24]https://commons.wikimedia.org/wiki/File:Raman_energy_levels.jpg

第二章參考文獻
[1]Ileperuma, O. A., Dissanayake, M. A. K. L., & Somasundaram, S. (2002). Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes. Electrochimica Acta, 47(17), 2801-2807.
[2]Wang, P., Zakeeruddin, S. M., Moser, J. E., & Grätzel, M. (2003). A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. The Journal of Physical Chemistry B, 107(48), 13280-13285.
[3]Wang, L., Fang, S., Lin, Y., Zhou, X., & Li, M. (2005). A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors. Chemical communications, (45), 5687-5689.
[4]Dissanayake, M. A. K. L., Jayathissa, R., Seneviratne, V. A., Thotawatthage, C. A., Senadeera, G. K. R., & Mellander, B. E. (2014). Polymethylmethacrylate (PMMA) based quasi-solid electrolyte with binary iodide salt for efficiency enhancement in TiO2 based dye sensitized solar cells. Solid State Ionics, 265, 85-91.
[5]陳玉麟,"應用新穎材料於染料敏化太陽能電池與電致變色元件之研究",國立東華大學光電工程研究所碩士論文,2016
[6]Livage, J., & Ganguli, D. (2001). Sol–gel electrochromic coatings and devices: a review. Solar Energy Materials and Solar Cells, 68(3-4), 365-381.
[7]蔡侑東,"氧化鎢-氧化鎳固態互補式電致色變元件之製作與特性分析" ,臺灣師範大學機電科技研究所學位論文,2007
[8]Chen, X., Tang, Q., He, B., & Chen, H. (2015). Graphene-incorporated quasi-solid-state dye-sensitized solar cells. RSC Advances, 5(54), 43402-43407.
[9]Grätzel, M. (2001). Photoelectrochemical cells. nature, 414(6861), 338.
[10]林毓超,吳厚德,林憲偉,張豐志,"聚偏二氟乙烯摻混聚乙酸乙烯在固態高分子電解質之研究",國立交通大學應用化學所,第24屆高分子研討會論文專輯,2001
[11]Jane Herr講義,"〈第六章 離子導電性材料〉高分子電解質. ";Retrieved from : http://eportfolio.lib.ksu.edu.tw/user/T/H/T093000078-20110524105102.pdf
[12]Wu, J., Lan, Z., Hao, S., Li, P., Lin, J., Huang, M., ... & Huang, Y. (2008). Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry, 80(11), 2241-2258.

第三章參考文獻
[1]Wang, P., Zakeeruddin, S. M., Comte, P., Exnar, I., & Grätzel, M. (2003). Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 125(5), 1166-1167.
[2]Lee, H. F., Kai, J. J., Liu, P. C., Chang, W. C., Ouyang, F. Y., & Chan, H. T. (2012). A comparative study of charge transport in quasi-solid state dye-sensitized solar cells using polymer or nanocomposite gel electrolytes. Journal of Electroanalytical Chemistry, 687, 45-50.
[3]Mohanty, S. P., & Bhargava, P. (2012). Impact of isoelectric points of nanopowders in electrolytes on electrochemical characteristics of dye sensitized solar cells. Journal of Power Sources, 218, 174-180.
[4]Dkhissi, Y., Huang, F., Cheng, Y. B., & Caruso, R. A. (2014). Quasi-solid-state dye-sensitized solar cells on plastic substrates. The Journal of Physical Chemistry C, 118(30), 16366-16374.
[5]Lue, S. J., Wu, Y. L., Tung, Y. L., Shih, C. M., Wang, Y. C., & Li, J. R. (2015). Functional titanium oxide nano-particles as electron lifetime, electrical conductance enhancer, and long-term performance booster in quasi-solid-state electrolyte for dye-sensitized solar cells. Journal of Power Sources, 274, 1283-1291.
[6]Chen, X., Tang, Q., He, B., & Chen, H. (2015). Graphene-incorporated quasi-solid-state dye-sensitized solar cells. RSC Advances, 5(54), 43402-43407.

第四章參考文獻
[1]Choi, H., Kim, H., Hwang, S., Han, Y., & Jeon, M. (2011). Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. Journal of Materials Chemistry, 21(21), 7548-7551.
[2]Zhang, D. W., Li, X. D., Li, H. B., Chen, S., Sun, Z., Yin, X. J., & Huang, S. M. (2011). Graphene-based counter electrode for dye-sensitized solar cells. Carbon, 49(15), 5382-5388.
[3]黃偉智,"奈米複合材料於染料敏化太陽能電池對電極之研究",國立東華大學光電工程研究所碩士論文,2015
[4]施純鈞,"石墨烯奈米複合材料於染料敏化太陽能電池對電極之研究",國立東華大學光電工程研究所碩士論文,2017
[5]Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
[6]Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
[7]Busch, D. H., & Bailar Jr, J. C. (1956). The iron (II)-methine chromophore. Journal of the American Chemical Society, 78(6), 1137-1142.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *