|
一、中文部分 王毓軒 (2011),使用資料探勘與公司治理變數建構舞弊預警模型,國立中正大學會計與資訊科技研究所碩士論文。 朱家逸 (2010),整合隨機森林與約略集合在偵測財務報表舞弊之應用,中國文化大學商學院會計研究所碩士論文。 李仁鐘、李秋緣:《R語言資料分析:從機器學習、資料探勘、文字探勘到巨量資料分析》(新北:博碩文化,2017年),頁87-91 邱秀清、李慕萱、劉仲凱 (2009),「董監事專業性與財務報表重編」,《文大商管學報》,14(1),頁1-17。 林欣瑾 (2008),財務報表舞弊偵測之研究-資料探勘之應用,中國文化大學會計研究所碩士論文。 林琦珍 (2015),「財務報表重編之預警模型-資料探勘之應用」,《會計與公司治理》,10(1),頁1-18。 林嬋娟、張哲嘉 (2009),「董監事異常變動、家族企業與企業舞弊之關聯性」,《會計評論》,第48期,頁1-33。 翁仲信 (2016),董監事自肥與財務報表重編之關聯,國立雲林科技大學財務金融系碩士論文。 許伯彥 (2003),財務報表舞弊風險評量模式研究,國立臺灣大學會計系研究所碩士論文。 陳宜伶、陳文英 (2019),「企業社會責任與公司治理對財務報表重編之影響」,《商略學報》,11(4),頁271-292。 陳雅琪 (2007),董事會結構、家族控制持股、集團企業與財務報表舞弊之關聯性研究,國立成功大學會計學研究所碩士論文。 詹姆斯、威滕、哈斯帖與提布施瓦尼著;王星等譯:《统计学习导论-基于R应用》(北京:机械工程出版社,2015年) ,頁221-241。 簡禎富、許嘉裕:《資料挖礦與大數據分析》(新北:前程文化,2014年),頁363-365。 蘇柏翰 (2016),運用資料探勘技術偵測財務報表舞弊-以台灣上市(櫃)公司為例,國立成功大學會計研究所碩士論文。
二、英文部分 Badolato, P. G., Donelson, D. C., & Ege, M. (2014). Audit committee financial expertise and earnings management: The role of status. Journal of Accounting and Economics, 58(2-3): 208–230. Beasley, M. S. (1996). An empirical analysis of the relation between the board of director composition and financial statement fraud. The Accounting Review, 71(4): 443-465. Chen, F. H., Chi, D. J., & Wang, Y. C. (2015). Detecting biotechnology industry's earnings management using bayesian network, principal component analysis, back propagation neural network, and decision tree. Economic Modelling, 46(C): 1-10. Dalnial, H., Kamaluddin, A., Sanusi, Z. M. ,& Khairuddin, K. S. (2014). Accountability in financial reporting: detecting fraudulent firms. Social and Behavioral Sciences, 145: 61-69. Dunn, P. (2004). The impact of insider power on fraudulent financial reporting. Journal of Management, 30(3): 397-412. Fanning, K. M., & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. International Journal of Intelligent Systems in Accounting, Finance & Management, 7(1): 21-41. Green, B. P., & Choi, J. H. (1997). Assessing the risk of management fraud through neural network technology. Auditing: A Journal of Practice and Theory, 16(1): 14-28. Höglund, H. (2012). Detecting earnings management with neural networks. Expert Systems with Applications, 39(10): 9564-9570. Jan, C. L. (2018). An effective financial statements fraud detection model for the sustainable development of financial markets: evidence from Taiwan. Sustainability, 10(2), 513 :1-14. Kaminski, K. A., Wetzel, T. S., & Guan, L. (2004). Can financial ratios detect fraudulent financial reporting? Managerial Auditing Journal, 19(1): 15-28. Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4): 995-1003. Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. International Journal of Computational Intelligence, 3(2): 104-110. Persons, O. S. (1995). Using financial statement data to identify factors associated with fraudulent financial reporting. Journal of Applied Business Research, 11(3): 38-46. Rezaee, Z. (2003). Causes, consequences, and deterence of financial statement fraud. Critical Perspectives on Accounting, 16(3): 277-298. Sunardi, S., & Amin, M. N. (2018). Fraud detection of financial statement by using fraud diamond perspective. International Journal of Development and Sustainability, 7(3): 878-891. Yao, J., Zhang, J., & Wang, L. (2018). A financial statement fraud detection model based on hybrid data mining methods. 2018 International Conference on Artificial Intelligence and Big Data.
|