帳號:guest(3.144.21.158)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:莊雅晴
作者(英文):Ya-Qing Chuang
論文名稱:臺北機器局遺址出土古瓷器之非侵入性分析
論文名稱(英文):Non-invasive Analysis of Archaic Porcelain Excavated from the Taipei Machinery Bureau Site
指導教授:劉瑩三
指導教授(英文):Ying-San Liou
口試委員:劉益昌
楊小青
口試委員(英文):Yi-Chang Liu
Hsiao-Chin Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610554004
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:164
關鍵詞:顯微拉曼微區X光射線螢光光譜儀拉曼聚合指數
關鍵詞(英文):Micro-Raman SpectroscopyMicro-XRF Spectrometerthe Raman Index of Polymerization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏收藏:0
本研究對臺北機器局遺址出土之古瓷器,採用非侵入性分析方法,使用顯微拉曼光譜儀、微區X光射線螢光光譜儀 (μ-XRF) 對源自中國與日本兩種不同起源的24件瓷器進行坯體、釉料和顏料的分析,試圖比較兩種不同起源的古瓷器在礦物和化學組成上的異同情形。顯微拉曼分析結果顯示臺北機器局遺址挖掘出土源自中國瓷器坯體的礦物以石英、莫來石為主,日本瓷器則以石英為主,莫來石的存在與否顯示中國與日本來源的瓷器存在著差異。此外由釉料拉曼圖譜分析計算所得到的拉曼聚合指數 (Ip, the Raman Index of Polymerization) ,顯示其燒製溫度大約在1000~1400℃左右,若與顯微拉曼光譜分析礦物種類的結果結合,可進一步推測燒製溫度介於1200℃~1400℃。源自中國瓷器與日本瓷器可能皆含鈣基釉及鉀基釉,此結果與μ-XRF對釉料助溶劑的成分分析結果一致。顏料 (藍色、綠色、紫色及黑色) 的礦物成分拉曼分析結果,大部分僅識別出典型的玻璃結構的 Si-O 拉伸和彎曲包絡圖譜。利用拉曼聚合作用指數 (Ip) 、最大伸長振動峰值波數 (νmax Si-O Stretching) 與前人研究中拉曼圖譜資料比對,本研究的標本點皆落在瓷器區域,與前人研究結果類似。
對古瓷器坯體進行化學成分分析,以坯體中主要氧化物Al2O3與SiO2散點圖顯示,源自日本瓷器除了標本POR24、POR25、POR35及POR38落入中國瓷器的範圍外,其餘標本坯體具有低鋁低矽的特性,原因可能是考古學家錯誤分類的來源或者是仿中國瓷器風格的產品,而源自中國瓷器坯體具有高鋁高矽的特性。顏料分析結果顯示,源自中國瓷器藍色顏料可能以亞鐵離子 (Fe2+) 作為著色劑,而源自日本瓷器藍色顏料可能以氧化鈷作為著色劑且以低量鈷離子 (Co2+) 完全熔融在玻璃網絡中,鐵元素可能是有意添加的,使藍色裝飾呈深藍色。
另外計算 Fe2O3 /CoO 和 MnO/CoO 的比值,源自日本瓷器具有較低的 Fe2O3 /CoO 和 MnO/CoO 比值,因此呈現艷麗深藍,而大多數源自中國瓷器具有較高的 Fe2O3/CoO 和 MnO/CoO 比值,呈現淡藍,僅有源自中國瓷器標本POR-21、POR-22及POR-23具有較低 Fe2O3 /CoO 比值的特殊中國瓷器仍然呈現深藍。綠色顏料部分,源自中國瓷器標本POR17與源自日本瓷器標本POR28、POR33的 μ-XRF 結果顯示皆含有鐵元素,推測其亞鐵離子(Fe2+) 是導致鈣 (鉀) 基釉中觀察到的綠色的原因。源自日本標本POR32、33、35、38和源自中國標本POR34、36、37、39棕色顏料及源自日本標本POR30橘色顏料被鑑定為赤鐵礦。另外,源自日本標本POR31紫色顏料推測其著色劑為亞錳離子 (Mn2+) 。源自日本標本POR31、POR32、POR33黑色顏料推測其著色劑為由氧化鐵 (Fe2O3) 導致的。
In this study, non-invasive methods were employed to analyze antique porcelain excavated from the Taipei Machinery Bureau (TMB) site. Twenty-four porcelain wares of two distinct Chinese and Japanese origins were examined in terms of body, glaze and pigment using a micro-Raman spectrometer and micro X-ray fluorescence (μ-XRF) spectrometer to compare the mineral and chemical composition of the wares of the two different origins. The results of the micro-Raman analysis indicate that the minerals unearthed from the TMB site, which originated from Chinese porcelain bodies, are predominantly quartz and mullite, whereas Japanese porcelain is dominated by quartz. The presence or absence of mullite suggests a difference between porcelain of Chinese and Japanese origins. In addition, the Raman index of polymerization (Ip), calculated from the Raman spectra of the glazes, indicates a firing temperature of around 1000-1400°C. When combined with the results of the micro-Raman spectroscopy of the mineral species, the firing temperature can be further estimated to be in the range of 1200°C-1400°C. Porcelain of Chinese and Japanese origins may both contain calcium- and potassium-based glazes, and this result is concordant with the results of the μ-XRF analysis of the composition of the glaze solubilizers. Raman analytic results of the mineral composition for the pigments (blue, green, purple and black) mostly be identified only Si-O stretching and bending envelope graphs belonging to typical of glass structures. The Ip and the νmax Si-O stretching were compared with the Raman spectra from past research. The samples in this study all fell in the porcelain region, which is similar to the results of previous studies.
Analysis of the chemical composition of the archaic porcelain bodies, using scatter plots of the main oxides in the bodies, Al2O3 and SiO2, shows that, with the exception of the Japanese porcelain specimens POR24, POR25, POR35 and POR38, which fall within the range of Chinese porcelain, the rest of the specimens have low Al and Si characteristics, which may be the result of an archaeological misclassification or an imitation of Chinese porcelain style, whereas the Chinese porcelain bodies have high Al and Si characteristics. The results of the pigment analysis suggest that the blue pigment from Chinese porcelain might have been colored with ferrous ions (Fe2+), whereas the blue pigment from Japanese porcelain might have been colored with cobalt oxide and low levels of cobalt ions (Co2+) completely fused in the glass network, with the iron element possibly added intentionally to give the blue decoration a dark blue hue.
Additionally, when the ratio of Fe2O3/CoO to MnO/CoO was calculated, porcelain of Japanese origin has a lower Fe2O3/CoO and MnO/CoO ratio and therefore appears a brilliant dark blue, while most porcelain of Chinese origin has a higher Fe2O3/CoO and MnO/CoO ratio and exhibits a light shade of blue, except the Chinese porcelain samples POR-21, POR-22 and POR-23, which have a lower Fe2O3/CoO ratio, still appearing dark blue. For the green pigments, μ-XRF results from Chinese porcelain sample POR17 and Japanese porcelain samples POR28 and POR33 both show the presence of iron whose ferrous ions (Fe2+) are presumed to be responsible for the green tint observed in the calcium (potassium) based glazes. The brown pigment from Japanese samples POR32, 33, 35, 38 and the brown pigment from Chinese samples POR34, 36, 37, 39 and the orange pigment from Japanese sample POR30 have been identified as hematite. Further, the coloring agent for the purple pigment from the Japanese sample POR31 is presumed to be manganese ions (Mn2+). The black pigments from the Japanese samples POR31, POR32 and POR33 are presumed to be colored by iron oxide (Fe2O3).
第一章 緒論 1
1.1研究動機與目的 2
1.2研究流程 5
第二章 研究背景 7
2.1陶瓷特性 7
2.2古瓷器的特徵 8
2.3古瓷器的研究方法 10
2.4古瓷器的研究案例 13
2.5臺北機器局遺址背景 18
第三章 實驗原理與分析方法 25
3.1共軛聚焦顯微拉曼光譜儀 25
3.2 X光螢光光譜儀 29
3.3標本基本資料 31
第四章 結果與討論 37
4.1 標本拉曼光譜分析結果 37
4.2 標本μ-XRF分析結果 86
4.3 小結 90
4.4 討論 97
第五章 結論與建議 109
5.1結論 109
5.2建議 111
參考文獻 113
附錄一、顯微拉曼光譜分析圖譜補充 125
附錄二、μ-XRF的分析點位 135

方建能、余炳盛(2005) 拉曼光譜儀:古器物與玉石鑑定的新利器。台灣博物,第二十四卷,第三期(87):78-83。
王淑津、劉益昌(2009) 〈大坌坑遺址出土十二至十七世紀外來陶瓷器〉收錄於《2008年台灣考古工作會報》,頁275-293,中央研究院歷史語言研究所主辦。
王鑫(1982) 《台灣地形景觀》臺北:渡假出版社。
江建志(1998) 儀器總攬-化學分析儀器:雷射拉曼散射光譜儀,國家實驗研究院儀器科技研究中心,新竹。
宋光梁(1986) 《陶瓷技術概論》台北:財團法人徐氏基金會。
李匡悌、盧泰康、朱正宜、臧振華(2006) 〈試論台南地區出土的十七世紀日本肥前青花瓷〉收錄於《九十四年台灣考古工作會報報告集》,國立台灣史前文化博物館主辦。
李慶樹(2010) 《南宋官窯瓷器與貢瓷之研究-以工藝技術與坯、釉化學組成為例》臺中:私立逢甲大學歷史與文物管理所碩士論文(未出版)。
汪建民(1994) 陶瓷概述,陶瓷技術手冊(上)汪建民主編,中華民國產業科技發展協會,台北市;中華民國粉末冶金協會出版,新竹縣,3-26頁。
林連勝(2004) 《鈞窯瓷器之分析鑑定研究》雲林:國立雲林科技大學文化資產維護研究所碩士論文(未出版)。
林朝棨(1957) 《台灣地形》臺北:台灣省文獻委員會。
林廉穎(2010) 《明代景德鎮單色釉官窯瓷器之研究》臺北:國立臺灣師範大學美術學系碩士論文(未出版)。
施正雄(2012) 《儀器分析原理與應用》國家教育研究院主編,臺北:五南圖書出版公司。
郭演儀(1984) 南北方古代的制瓷原料和瓷器的特征。景德镇陶瓷學院學報,1。
陳培源(2006) 《台灣地質》臺北:台灣省應用地質技師公會。
陳榮顯(1998) 儀器總攬-化學分析儀器:X 光螢光光譜儀,國家實驗研究院儀器科技研究中心,新竹。
陶青山(1986) 《陶藝燒繪入門》臺北:武陵出版社。
傅秉秋(2009) 《台灣西南海岸沖積平原上西寮遺址之史前陶片科學分析初探》花蓮:國立東華大學地球科學研究所碩士論文(未出版)。
葉宏明(1995) 中國瓷器的起源。天津大學學報,28(4),339-349。
趙金勇、鍾亦興(2012) 花岡山與大龍峒遺址的近現代陶瓷消費。Journal of Archaeology and Anthropology, 76, 61-96。
劉益昌(2002) 《淡水河口的史前文化與族群》台北縣立十三行博物館。
劉益昌(2007) 《台北市大龍國小考古探坑挖掘計畫期末報告書》台北市政府文化局委託辦理。
劉益昌(2010)《交通部臺灣鐵路管理局所屬 E1/E2 區域清末臺北機器局暨日治時期鐵道部臺北工場考古試掘計畫期末報告》交通部臺灣鐵路管理局委託之研究報告。
劉益昌(2014) 《臺北捷運松山線G14北門站新設A出入口搶救考古挖掘計畫期末報告書》日商前田營造股份有限公司臺灣分公司。
劉瑩三、劉益昌(2006) 〈顯微拉曼光譜應用在陶片礦物成分分析初探〉《2005年台灣考古工作會報》國立台灣史前博物館主辦,台東。
鄧屬予(2006) 台北盆地之地質研究。WESTERN PACIFIC EARTH SCIENCES, 6, 1-28。
盧泰康(2008) 澎湖所見的肥前瓷器。金大考古,61,1-2。
盧泰康(2010) 臺灣考古出土歷史時期陶瓷的年代與特徵。故宮文物月刊(326), 56-67。
謝世豪(1994) 玻璃之結構與特性,陶瓷技術手冊(下)汪見民主編,中華民國產業科技發展協會,台北市;中華民國粉末冶金協會出版,新竹縣,876-907頁。
謝艾倫(2009) 《宜蘭淇武蘭遺址出土外來陶瓷器之相關研究》臺北:臺灣大學人類學研究所碩士論文(未出版)。
謝志賢(1983) 《陶瓷工藝》臺北:正文書局。
謝明良(2009) 熱蘭遮城遺址出土的十七世紀歐洲、日本和東南亞陶瓷。金澤大學考古學紀要,30,3-16。
蘇竹君(2008) 《宋代汝窯及耀州窯瓷器之岩理學研究》 臺北:國立臺灣師範大學。
Baraldi, P. and Tinti, A. (2008). Raman spectroscopy in art and archaeology. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 39(8), 963-965.
Barker, D. and Majewski, T. (2006). Ceramic studies in historical archaeology: na.
Bell, I. M., Clark, R. J. and Gibbs, P. J. (1997). Raman spectroscopic library of natural and synthetic pigments (pre-≈ 1850 AD). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53(12), 2159-2179.
Bersani, D. and Madariaga, J. M. (2012). Applications of Raman spectroscopy in art and archaeology: Wiley Online Library.
Brown, R. M. (1977). The ceramics of South-East Asia: their dating and identification: Oxford University Press Kuala Lumpur.
Castro, K., Proietti, N., Princi, E., Pessanha, S., Carvalho, M. L., Vicini, S. and Madariaga, J. M. (2008). Analysis of a coloured Dutch map from the eighteenth century: the need for a multi-analytical spectroscopic approach using portable instrumentation. Analytica Chimica Acta, 623(2), 187-194.
Cesareo, R., Frazzoli, F. and Sciuti, S. (1976). Sensitivity of radioisotope XRF technique with particular reference to portable units. Journal of Radioanalytical and Nuclear Chemistry, 34(1), 157-170.
Cheng, H., He, W., Tang, J., Yang, F. and Wang, J. (1996). PIXE analysis of ancient Chinese Qing dynasty porcelain. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 118(1-4), 377-381.
Cheng, H., Zhang, B., Zhu, D., Yang, F., Sun, X. and Guo, M. (2005). Some new results of PIXE study on Chinese ancient porcelain. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 240(1-2), 527-531.
Cheng, H., Zhang, Z., Xia, H., Jiang, J. and Yang, F. (2002). Non-destructive analysis and appraisal of ancient Chinese porcelain by PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 190(1-4), 488-491.
Cheng, H., Zhang, Z., Zhang, B. and Yang, F. (2004). The non-destructive identification of early Chinese porcelain by PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 219, 16-19.
Cheng, L., Ding, X., Liu, Z., Pan, Q. and Chu, X. (2007). Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(8), 817-823.
Colomban, P., Sagon, G., and Faurel, X. (2001). Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. Journal of Raman spectroscopy, 32(5), 351-360.
Colomban, P. (2003). Polymerization degree and Raman identification of ancient glasses used for jewelry, ceramic enamels and mosaics. Journal of Non-Crystalline Solids, 323(1-3), 180-187.
Colomban, P. (2004). Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses. Applied Physics A, 79(2), 167-170.
Colomban, P. (2004). Raman μ-Spectrometry, A Unique Tool for On-Site Analysis and Identification of Ancient Ceramics and Glasses. MRS Online Proceedings Library (OPL), 852.
Colomban, P. (2005). Case study: Glasses, glazes and ceramics—Recognition of ancient technology from the Raman spectra. Raman spectroscopy in archaeology and art history, 192-206.
Colomban, P., De Laveaucoupet, R. and Milande, V. (2005). On‐site Raman spectroscopic analysis of Kütahya fritwares. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 36(9), 857-863.
Colomban, P., Gironda, M., Edwards, H. G. and Mesqui, V. (2021). The enamels of the first (soft‐paste) European blue‐and‐white porcelains: Rouen, Saint‐Cloud and Paris factories: Complementarity of Raman and X‐ray fluorescence analyses with mobile instruments to identify the cobalt ore. Journal of Raman spectroscopy.
Colomban, P. and Kırmızı, B. (2020). Non‐invasive on‐site Raman study of polychrome and white enamelled glass artefacts in imitation of porcelain assigned to Bernard Perrot and his followers. Journal of Raman spectroscopy, 51(1), 133-146.
Colomban, P., Kırmızı, B., Zhao, B., Clais, J.-B., Yang, Y. and Droguet, V. (2020). Investigation of the Pigments and Glassy Matrix of Painted Enamelled Qing Dynasty Chinese Porcelains by Noninvasive On-Site Raman Microspectrometry. Heritage, 3(3), 915-940.
Colomban, P., Liem, N. Q., Sagon, G., Tinh, H. X. and Hoành, T. B. (2003). Microstructure, composition and processing of 15th century Vietnamese porcelains and celadons. Journal of Cultural Heritage, 4(3), 187-197.
Colomban, P., Lu, T.-A. and Milande, V. (2018). Non-invasive on-site Raman study of blue-decorated early soft-paste porcelain: The use of arsenic-rich (European) cobalt ores–Comparison with huafalang Chinese porcelains. Ceramics International, 44(8), 9018-9026.
Colomban, P. and Milande, V. (2006). On‐site Raman analysis of the earliest known Meissen porcelain and stoneware. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 37(5), 606-613.
Colomban, P. and Paulsen, O. (2005). Non‐destructive determination of the structure and composition of glazes by Raman spectroscopy. Journal of the American Ceramic Society, 88(2), 390-395.
Colomban, P., Sagon, G., Huy, L. Q., Liem, N. Q. and Mazerolles, L. (2004). Vietnamese (15th Century) Blue‐And‐White, Tam Thai and Lustre Porcelains/Stonewares: Glaze Composition and Decoration Techniques. Archaeometry, 46(1), 125-136.
Colomban, P., Tournie, A. and Bellot‐Gurlet, L. (2006). Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 37(8), 841-852.
Colomban, P. and Treppoz, F. (2001). Identification and differentiation of ancient and modern European porcelains by Raman macro‐and micro‐spectroscopy. Journal of Raman spectroscopy, 32(2), 93-102.
Colomban, P., Zhang, Y. and Zhao, B. (2017). Non-invasive Raman analyses of Chinese huafalang and related porcelain wares. Searching for evidence for innovative pigment technologies. Ceramics International, 43(15), 12079-12088.
De Pauw, E., Tack, P., Verhaeven, E., Bauters, S., Acke, L., Vekemans, B. and Vincze, L. (2018). Microbeam X-ray fluorescence and X-ray absorption spectroscopic analysis of Chinese blue-and-white kraak porcelain dating from the Ming dynasty. Spectrochimica Acta Part B: Atomic Spectroscopy, 149, 190-196.
de Waal, D. (2004). Raman investigation of ceramics from 16th and 17th century Portuguese shipwrecks. Journal of Raman spectroscopy, 35(8‐9), 646-649.
de Waal, D. (2009). Micro‐Raman and portable Raman spectroscopic investigation of blue pigments in selected Delft plates (17–20th Century). Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40(12), 2162-2170.
Fischer, C. and Hsieh, E. (2017). Export Chinese blue-and-white porcelain: compositional analysis and sourcing using non-invasive portable XRF and reflectance spectroscopy. Journal of archaeological science, 80, 14-26.
Garrigós, J. B. I., Mommsen, H., and Tsolakidou, A. (2002). Alterations of Na, K and Rb concentrations in Mycenaean pottery and a proposed explanation using X‐ray diffraction. Archaeometry, 44(2), 187-198.
Giannini, R., Freestone, I. C. and Shortland, A. J. (2017). European cobalt sources identified in the production of Chinese famille rose porcelain. Journal of archaeological science, 80, 27-36.
Juan, W., Leung, P. L. and Jiazhi, L. (2007). A study of the composition of Chinese blue and white porcelain. Studies in conservation, 52(3), 188-198.
Kırmızı, B., Colomban, P., and Blanc, M. (2010). On‐site analysis of Limoges enamels from sixteenth to nineteenth centuries: an attempt to differentiate between genuine artefacts and copies. Journal of Raman spectroscopy, 41(10), 1240-1247.
Kock, L. D. (2013). Raman analysis of glaze on various archaeological shard samples and intact Ming plates. Journal of Raman spectroscopy, 44(1), 97-101.
Larkin,P.(2017). Infrared and Raman spectroscopy: principles and spectral interpretation: Elsevier.
Leung, P. L. and Luo, H. (2000). A study of provenance and dating of ancient Chinese porcelain by x‐ray fluorescence spectrometry. X‐Ray Spectrometry: An International Journal, 29(1), 34-38.
Liem, N. Q., Sagon, G., Quang, V. X., Tan, H. V. and Colomban, P. (2000). Raman study of the microstructure, composition and processing of ancient Vietnamese (proto) porcelains and celadons (13–16th centuries). Journal of Raman spectroscopy, 31(10), 933-942.
Liem, N. Q., Thanh, N. T. and Colomban, P. (2002). Reliability of Raman micro‐spectroscopy in analysing ancient ceramics: the case of ancient Vietnamese porcelain and celadon glazes. Journal of Raman spectroscopy, 33(4), 287-294.
Liou, Y. S., Chang Liu, Y. and Huang, H. Y. (2011). Micro‐Raman spectroscopic study of cord‐marked pottery decorated with red coatings from Taiwan, ca 2600–1700 BC. Journal of Raman spectroscopy, 42(5), 1062-1068.
Liou, Y. S. (2015). Multi‐technique study of archaeological cord‐marked wares decorated with red coatings from Taiwan. Journal of Raman spectroscopy, 46(1), 133-140.
Lofrumento, C., Zoppi, A. and Castellucci, E. M. (2004). Micro‐Raman spectroscopy of ancient ceramics: a study of French sigillata wares. Journal of Raman spectroscopy, 35(8‐9), 650-655.
Longoni, A., Fiorini, C., Leutenegger, P., Sciuti, S., Fronterotta, G., Strüder, L. and Lechner, P. (1998). A portable XRF spectrometer for non-destructive analyses in archaeometry. Nuclear instruments and methods in Physics research Section A: Accelerators, spectrometers, detectors and associated equipment, 409(1-3), 407-409.
Maggetti, M. (2005). The Alps—a barrier or a passage for ceramic trade? Archaeometry, 47(2), 389-401.
Mancini, D., Dupont-Logié, C. and Colomban, P. (2016). On-site identification of Sceaux porcelain and faience using a portable Raman instrument. Ceramics International, 42(13), 14918-14927.
Medeghini, L., Lottici, P. P., De Vito, C., Mignardi, S. and Bersani, D. (2014). Micro‐Raman spectroscopy and ancient ceramics: applications and problems. Journal of Raman spectroscopy, 45(11-12), 1244-1250.
Mayo, D. W., Miller, F. A. and Hannah, R. W. (2004). Course notes on the interpretation of infrared and Raman spectra: John Wiley & Sons.
Nasdala, L., Smith, D. C., Kaindl, R., Ziemann, M. A., Beran, A. and Libowitzky, E. (2004). Raman spectroscopy: analytical perspectives in mineralogical research. Spectroscopic methods in mineralogy, 6, 281-343.
Ospitali, F., Sabetta, T., Tullini, F., Nannetti, M. C. and Di Lonardo, G. (2005). The role of Raman microspectroscopy in the study of black gloss coatings on Roman pottery. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 36(1), 18-23.
Prinsloo, L. C., Wood, N., Loubser, M., Verryn, S. M. and Tiley, S. (2005). Re‐dating of Chinese celadon shards excavated on Mapungubwe Hill, a 13th century Iron Age site in South Africa, using Raman spectroscopy, XRF and XRD. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 36(8), 806-816.
Sendova, M., Zhelyaskov, V., Scalera, M. and Ramsey, M. (2005). Micro‐Raman spectroscopic study of pottery fragments from the Lapatsa tomb, Cyprus, ca 2500 BC. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 36(8), 829-833.
Smith, G. D. and Clark, R. J. (2004). Raman microscopy in archaeological science. Journal of archaeological science, 31(8), 1137-1160.
Trí, B. M., Tín, T. T., Liêm, N. Q. and Colomban, P. (2001). The Cù Lao Chàm (Hôi An) shipwreck: How to date and identify the ancient Vietnamese porcelains and celadons excavated. Taoci (Bull. Soc. Fr. Céram. Orient.-SFECO), 2, 105-110.
Vieira Ferreira, L., Barros, L., Ferreira Machado, I., Pereira, M. and Casimiro, T. (2020). An archaeometric study of a Late Neolithic cup and coeval and Chalcolithic ceramic sherds found in the São Paulo Cave, Almada, Portugal. Journal of Raman spectroscopy, 51(3), 483-492.
Van Pevenage, J., Lauwers, D., Herremans, D., Verhaeven, E., Vekemans, B., De Clercq, W. and Vandenabeele, P. (2014). A combined spectroscopic study on Chinese porcelain containing ruan-cai colours. Analytical Methods, 6(2), 387-394.
Vandenabeele, P., Castro, K., Hargreaves, M., Moens, L., Madariaga, J. and Edwards, H. (2007). Comparative study of mobile Raman instrumentation for art analysis. Analytica Chimica Acta, 588(1), 108-116.
Vandenabeele, P., Edwards, H. G. and Moens, L. (2007). A decade of Raman spectroscopy in art and archaeology. Chemical reviews, 107(3), 675-686.
Vandenabeele, P., Lambert, K., Matthys, S., Schudel, W., Bergmans, A. and Moens, L. (2005). In situ analysis of mediaeval wall paintings: a challenge for mobile Raman spectroscopy. Analytical and bioanalytical Chemistry, 383(4), 707-712.
Van Grieken, R. E. and Markowicz, A. A. (2002). revised and expanded. Handbook of X‐Ray Spectrometry.
Vandenabeele, P., Tate, J. and Moens, L. (2007). Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy. Analytical and bioanalytical Chemistry, 387(3), 813-819.
Vandenabeele, P., Weis, T., Grant, E. and Moens, L. (2004). A new instrument adapted to in situ Raman analysis of objects of art. Analytical and bioanalytical Chemistry, 379(1), 137-142.
Vilnat,J.,Bourgois,D. and Dubois,M.(1967).Comparison of spectrochemical and XRF methods of enamel analysis. Paper presented at the Applied spectroscopy.
Yu, K. and Miao, J. (1997). Locating the origins of blue and white porcelains using EDXRF. Applied radiation and isotopes, 48(7), 959-963.
Yu, K. and Miao, J. (1998). Multivariate analysis of the energy dispersive X‐ray fluorescence results from blue and white Chinese porcelains. Archaeometry, 40(2), 331-339.
Zhou, Y., Hu, Y., Tao, Y., Sun, J., Cui, Y., Wang, K. and Hu, D. (2016). Study on the microstructure of the multilayer glaze of the 16th-17th century export blue-and-white porcelain excavated from Nan’ao-I Shipwreck. Ceramics International, 42(15), 17456-17465.
Zhu, D., Cheng, H., Lin, J. and Yang, F. (2006). PIXE study on the provenance of Chinese ancient porcelain. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 249(1-2), 633-637.
Zoppi, A., Lofrumento, C., Castellucci, E. M. and Migliorini, M. G. (2002). Micro-Raman technique for phase analysis on archaeological ceramics. Spectroscopy Europe, 14(5), 16-21.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *