帳號:guest(3.142.200.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:呂佳琳
作者(英文):Jia-Lin Lu
論文名稱:冷凍保存對共生藻(Symbiodinium sp.)蛋白質表現之影響研究
論文名稱(英文):Effect of cryopreservation on proteins from the ubiquitous marine dinoflagellate Symbiodinium sp.
指導教授:林家興
指導教授(英文):Chia-Hsin Lin
口試委員:李幸慧
蔡淑君
林家興
口試委員(英文):Hsing-Hui Li
Su-June Tsai
Chia-Hsin Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610563008
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:78
關鍵詞:冷凍保存共生藻兩段式冷凍保存蛋白質表現珊瑚
關鍵詞(英文):CryopreservationSymbiodiniumTwo-step freezingProtein analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
共生藻對於珊瑚礁生態系的復育及維持扮演著重要的角色,其與珊瑚間存在著內共生關係且透過光合作用提供珊瑚能量,因此共生藻對於珊瑚有其重要性。冷凍保存技術對於物種保存及基因庫的建立是一項不可或缺的技術。但此技術對於共生藻的保存發展尚未成熟且對於共生藻解凍後之分子層次的影響研究目前仍較少相關文獻,因此建立共生藻冷凍保存的條件流程及其分子層次的分析是必要的。本研究先針對共生藻系群B進行適當的抗凍劑種類、濃度及平衡時間的比較並利用兩段式冷凍法,以每分鐘59.83°C的降溫速率進行測試後。再解凍培養共生藻3、7、14及28天,然後利用西方墨點法進行光收穫蛋白(Light harvest protein, LHP)及紅螢光蛋白(Red fluorescent proteins, RFP)表現量分析。細胞活性則是利用三磷酸線苷生物測定法進行測試。實驗結果發現利用2M propylene glycol (PG)及2M Methanol (MeOH)作為抗凍劑且平衡時間分別為30分鐘及20分鐘,在解凍後都有較佳的細胞活性。甲醇及丙二醇處理組在解凍後培養28天後細胞數有明顯增加。MeOH處理組的細胞增長率約為PG 處理組的2倍。在蛋白質表現的部分,數種蛋白質的蛋白質總量受低溫影響有明顯不同。另外培養28天後,MeOH抗凍劑處理組的蛋白表現與對照組無差異,而利用PG抗凍劑處理組在培養28天後蛋白質表現仍與對照組有顯著差異。本研究為共生藻B提供了適當的冷凍條件及更進一步了解低溫下對於共生藻蛋白表現的影響。
Symbiotic algae play an important role in coral reef ecosystems. There is an inter-symbiotic relationship between coral and algae by providing energy to coral through photosynthesis process. Therefore, Symbiotic algae play an important role in coral reef ecosystems. Cryopreservation become an indispensable tool for species preserving and gene bank establishment, however this technology for symbiotic algae not yet matured and there is no study on the molecular level of symbiotic algae after thawing. Hence it is important to establish a suitable freezing protocol as well as to understand molecular impact by cryo-injury of symbiotic algae. The objective of this study was to identify suitable freezing conditions including the use of cryoprotectants (CPAs) and equilibration time through two-step freezing technique with a cooling rate of -59.83°C/for clade B Symbiodinium which were culture for 3, 7, 14 and 28 days after freezing and thawing. Then LHP and RFP were studied by western blotting for protein expression analysis while Adenosine triphosphate bioassay (ATP) for cell viability. The result showed that 2M propylene glycol (PG) with 30 minute equilibration time and 2M methanol (MeOH) with 20 minute equilibration time had best viabilities after thawing. Both treatments showed significantly increased growth rate after 28 days culture especially for the treatment by MeOH which was twice higher compared to PG treatment. The total amount of proteins is affected by low temperature. MeOH treatment did not show any significant difference from control, howeverin PG treatment group, it showed increasing protein expression after 28 days of culture. This study provides better understanding on freezing protocol for Symbiodinium clade B and the effects of low temperature towards protein expression in symbiotic algae.
中文摘要 I
英文摘要 II
目錄 III
表目錄 IV
圖目錄 V
第一章 緒論 1
1.1 冷凍保存 1
1.1.1 冷休克 1
1.1.2 胞內冰晶及胞外冰晶 2
1.2 成功冷凍保存的因素 3
1.2.1 抗凍劑(CPAs) 3
1.2.2 平衡時間 5
1.2.3 降溫及解凍速率 5
1.2.4 冷凍保存技術 6
1.2.5 活性分析 8
1.3 藻類冷凍保存現況 9
1.3.1 淡水藻類 10
1.3.2 海水藻類 14
1.3.3 共生藻 17
1.4 基因體學 19
1.4.1 去氧核醣核酸 19
1.4.2核醣核酸 20
1.4.3 蛋白質 22
1.4.3.1 蛋白質的分析方法 23
1.4.3.1.1 膠體電泳 24
1.4.3.1.2質譜儀 25
1.4.3.1.3蛋白質標籤系統 26
1.4.4 共生藻 26
1.4.4.1 共生藻與珊瑚間的共生關係 26
1.4.4.2 共生藻之細胞週期 27

第二章 材料與方法 29
2.1 共生藻之鑑種 29
2.2 共生藻培養 30
2.3 人工海水的配製 30
2.4 培養液更換 30
2.5 三磷酸腺苷檢測 31
2.6 兩段式冷凍保存共生藻 31
2.7 蛋白質萃取 33
2.7.1 蛋白質回溶 33
2.7.2 蛋白質電泳 34
2.7.3 SYPRO® Ruby蛋白質染色 34
2.7.4 西方墨點法 35
2.7.5 蛋白質表現量定量分析 35
2.8 統計分析 36

第三章 兩段式冷凍法之冷凍結果 37
3.1 前言 37
3.2 結果 38
3.2.1 不同平衡時間對解凍後共生藻活性之影響 38
3.2.2 抗凍劑之影響 41
3.2.3 冷凍共生藻之最佳條件 43
3.2.4 共生藻解凍後培養週期之成長趨勢 45
3.3 討論 46
3.3.1 冷凍方式及降溫速率之影響 46
3.3.2 抗凍劑之影響 47
3.3.3平衡時間於冷凍保存之影響 49
3.3.4 解凍後共生藻培養 50
3.4 結論 51

第四章 兩段式冷凍保存對共生藻蛋白質表現之影響 53
4.1 前言 53
4.2 結果 54
4.2.1 利用Image J對特定蛋白表現量之分析 54
4.2.2利用西方墨點法偵測光收穫蛋白與紅螢光蛋白表現量分析 59
4.3 討論 64
4.4 結論 66
參考文獻 67

Ares Jr, M., & Weiser, B. (1995). Rearrangement of snRNA Structure during Assembly and Function of the Spliceosome1. Progress in nucleic acid research and molecular biology (Vol. 50, pp. 131-159): Elsevier.
Babiak, I., Dobosz, S., Goryczko, K., Kuzminski, H., Brzuzan, P., & Ciesielski, S. (2002). Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology, 57(4), 1229-1249.
Babiak, I., Glogowski, J., Goryczko, K., Dobosz, S., Kuzminski, H., Strzezek, J., & Demianowicz, W. (2001). Effect of extender composition and equilibration time on fertilization ability and enzymatic activity of rainbow trout cryopreserved spermatozoa. Theriogenology, 56(1), 177-192.
Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences, 97(22), 11984-11989.
Baumann, J., Davies, S. W., Aichelman, H. E., & Castillo, K. D. (2018). Coral Symbiodinium community composition across the Belize Mesoamerican Barrier Reef System is influenced by host species and thermal variability. Microbial ecology, 1-13.
Beaty, M., & Parker, B. (1992). Cryopreservation of eukaryotic algae. Virginia J. Sci, 43, 403-410.
Benson, E. E. (2008). Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Critical reviews in Plant sciences, 27(3), 141-219.
Bevis, B. J., & Glick, B. S. (2002). Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nature biotechnology, 20(1), 83.
Borowitzka, M. A. (1981). Algae and grazing in coral reef ecosystems. Endeavour, 5(3), 99-106.
Box, J. (1988). Cryopreservation of the blue-green alga Microcystis aeruginosa. British Phycological Journal, 23(4), 385-386.
Brand, J. J., & Diller, K. R. (2004). Application and theory of algal cryopreservation. Nova Hedwigia, 79(1-2), 175-189.
Bui, T. V., Ross, I. L., Jakob, G., & Hankamer, B. (2013). Impact of procedural steps and cryopreservation agents in the cryopreservation of chlorophyte microalgae. PloS one, 8(11), e78668.
Burger, G., Saint-Louis, D., Gray, M. W., & Lang, B. F. (1999). Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea: cyanobacterial introns and shared ancestry of red and green algae. The Plant Cell, 11(9), 1675-1694.
Cañavate, J. P., & Lubian, L. M. (1994). Tolerance of six marine microalgae to the cryoprotectants dimethyl sulfoxide and methanol 1. Journal of phycology, 30(3), 559-565.
Cañavate, J. P., & Lubińn, L. M. (1995). Some aspects on the cryopreservation of microalgae used as food for marine species. Aquaculture, 136(3-4), 277-290.
Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences, 201211446.
Chong, G., Kuo, F.-W., Tsai, S., & Lin, C. (2017). Validation of reference genes for cryopreservation studies with the gorgonian coral endosymbiont Symbiodinium. Scientific reports, 7, 39396.
Chong, G., Tsai, S., Wang, L.-H., Huang, C.-Y., & Lin, C. (2016). Cryopreservation of the gorgonian endosymbiont Symbiodinium. Scientific reports, 6, 18816.
Crutchfield, A., Diller, K., & Brand, J. (1999). Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta). European Journal of Phycology, 34(1), 43-52.
Cunning, R., Muller, E. B., Gates, R. D., & Nisbet, R. M. (2017). A dynamic bioenergetic model for coral-Symbiodinium symbioses and coral bleaching as an alternate stable state. Journal of theoretical biology, 431, 49-62.
Curry, M. R. (2007). Cryopreservation of mammalian semen Cryopreservation and Freeze-Drying Protocols (pp. 303-311): Springer.
Day, J. G. (2004). Cryopreservation: fundamentals, mechanisms of damage on freezing/thawing and application in culture collections. Nova Hedwigia, 79(1-2), 191-205.
Day, J. G., Fleck, R. A., & Benson, E. E. (2000). Cryopreservation-recalcitrance in microalgae: novel approaches to identify and avoid cryo-injury. Journal of applied phycology, 12(3-5), 369-377.
Day, J. G., Watanabe, M. M., Morris, G. J., Fleck, R. A., & McLellan, M. R. (1997). Long-term viability of preserved eukaryotic algae. Journal of applied phycology, 9(2), 121-127.
Day, J., & Brand, J. (2005). Cryopreservation methods for maintaining microalgal cultures. Algal culturing techniques, 165-187.
Day, J., Benson, E., Harding, K., Knowles, B., Idowu, M., Bremner, D., Lorenz, M. (2005). Cryopreservation and conservation of microalgae: the development of a pan-European scientific and biotechnological resource (the COBRA project). CryoLetters, 26(4), 231-238.
Dimond, J. L., Pineda, R. R., Ramos-Ascherl, Z., & Bingham, B. L. (2013). Relationships between host and symbiont cell cycles in sea anemones and their symbiotic dinoflagellates. The Biological Bulletin, 225(2), 102-112.
Drobnis, E. Z., Crowe, L. M., Berger, T., Anchordoguy, T. J., Overstreet, J. W., & Crowe, J. H. (1993). Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. Journal of Experimental Zoology, 265(4), 432-437.
Edashige, K., Valdez Jr, D. M., Hara, T., Saida, N., Seki, S., & Kasai, M. (2006). Japanese flounder (Paralichthys olivaceus) embryos are difficult to cryopreserve by vitrification. Cryobiology, 53(1), 96-106.
Edwards, J., Schrick, F., McCracken, M., Van Amstel, S., Hopkins, F., Welborn, M., & Davies, C. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. American Journal of Reproductive Immunology, 50(2), 113-123.
El‐Battawy, K., & Linhart, O. (2009). Preliminary studies on cryopreservation of common tench (Tinca tinca) embryos (work in progress). Reproduction in domestic animals, 44(4), 718-723.
Everett, D. H. (2007). Basic principles of colloid science: Royal society of chemistry.
Fahy, G. M. (1986). The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology, 23(1), 1-13.
Falkowski, P. G., Dubinsky, Z., Muscatine, L., & McCloskey, L. (1993). Population control in symbiotic corals. Bioscience, 43(9), 606-611.
Farrant, J., Walter, C., Lee, H., & McGann, L. (1977). Use of two-step cooling procedures to examine factors influencing cell survival following freezing and thawing. Cryobiology, 14(3), 273-286.
Fenwick, C., & Day, J. G. (1992). Cryopreservation ofTetraselmis suecica cultured under different nutrients regimes. Journal of applied phycology, 4(2), 105-109.
Fields, S. D., Strout, G. W., & Russell, S. D. (1997). Spray‐freezing freeze substitution (SFFS) of cell suspensions for improved preservation of ultrastructure. Microscopy research and technique, 38(3), 315-328.
Fitt, W., & Trench, R. (1983). The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytologist, 94(3), 421-432.
Fujikawa, S., & Miura, K. (1986). Plasma membrane ultrastructural changes caused by mechanical stress in the formation of extracellular ice as a primary cause of slow freezing injury in fruit-bodies of Basidiomycetes (Lyophyllum ulmarium (Fr.) Kühner). Cryobiology, 23(4), 371-382.
Geiduschek, E. P. (1962). On the factors controlling the reversibility of DNA denaturation. Journal of molecular biology, 4(6), 467-487.
Gordon, J. A., & Jencks, W. P. (1963). The relationship of structure to the effectiveness of denaturing agents for proteins. Biochemistry, 2(1), 47-57.
Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K., & Tsien, R. Y. (2000). The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences, 97(22), 11990-11995.
Guermazi, W., Sellami-Kammoun, A., Elloumi, J., Drira, Z., Aleya, L., Marangoni, R., Maalej, S. (2010). Microalgal cryo-preservation using dimethyl sulfoxide (Me2SO) coupled with two freezing protocols: Influence on the fatty acid profile. Journal of Thermal Biology, 35(4), 175-181.
Gwo, J.-C., Chiu, J.-Y., Chou, C.-C., & Cheng, H.-Y. (2005). Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology, 50(3), 338-343.
Hagedorn, M., & Carter, V. L. (2015). Seasonal Preservation Success of the Marine Dinoflagellate Coral Symbiont, Symbiodinium sp. PloS one, 10(9), e0136358.
Hagedorn, M., & Carter, V. L. (2016). Cryobiology: principles, species conservation and benefits for coral reefs. Reproduction, Fertility and Development, 28(8), 1049-1060.
Hagedorn, M., Carter, V., Leong, J., & Kleinhans, F. (2010). Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium). Cryobiology, 60(2), 147-158.
Hammerstedt, R. H., Graham, J. K., & Nolan, J. P. (1990). Cryopreservation of mammalian sperm: what we ask them to survive. Journal of andrology, 11(1), 73-88.
Harding, K., Day, J. G., Lorenz, M., Timmermann, H., Friedl, T., Bremner, D. H., & Benson, E. E. (2004). Introducing the concept and application of vitrification for the cryo-conservation of algae–a mini-review. Nova Hedwigia, 79(1-2), 207-226.
Hiemenz, P. C., & Rajagopalan, R. (1997). Principles of Colloid and Surface Chemistry, revised and expanded: CRC press.
Huang, K.-J., Huang, Z.-Y., Lin, C.-Y., Wang, L.-H., Chou, P.-H., Chen, C.-S., & Li, H.-H. (2017). Generation of clade-and symbiont-specific antibodies to characterize marker molecules during Cnidaria-Symbiodinium endosymbiosis. Scientific reports, 7(1), 5488.
Hubalek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology, 46(3), 205-229.
Hwang, S.-W., & Horneland, W. (1965). Survival of algal cultures after freezing by controlled and uncontrolled cooling. Cryobiology, 1(5), 305-311.
Iglesias-Prieto, R., & Trench, R. (1997). Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll–protein complexes to different photon-flux densities. Marine Biology, 130(1), 23-33.
Ito, K., Inoue, S., Yamamoto, K., & Kawanishi, S. (1993). 8-Hydroxydeoxyguanosine formation at the 5'site of 5'-GG-3'sequences in double-stranded DNA by UV radiation with riboflavin. Journal of Biological Chemistry, 268(18), 13221-13227.
Jobling, M. A., Pandya, A., & Tyler-Smith, C. (1997). The Y chromosome in forensic analysis and paternity testing. International journal of legal medicine, 110(3), 118-124.
Johnston, J. W., Benson, E. E., & Harding, K. (2009). Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. Plant physiology and Biochemistry, 47(2), 123-131.
Joseph, I., Panigrahi, A., & Chandra, P. K. (2000). Tolerance of three marine microalgae to cryoprotectant dimethy sulfoxide, methanol and glycerol. Indian Journal of Marine Sciences, 29(3), 243-247.
Knight, M. E., & Turner, G. F. (2004). Laboratory mating trials indicate incipient speciation by sexual selection among populations of the cichlid fish Pseudotropheus zebra from Lake Malawi. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1540), 675-680.
Kono, S., Kuwano, K., Ninomiya, M., Onishi, J., & Saga, N. (1997). Cryopreservation of Enteromorpha intestinalis (Ulvales, Chlorophyta) in liquid nitrogen. Phycologia, 36(1), 76-78.
Kumari, N., Gupta, M. K., & Singh, R. K. (2016). Open encapsulation-vitrification for cryopreservation of algae. Cryobiology, 73(2), 232-239.
Kuwano, K., Aruga, Y., & Saga, N. (1993). Cryopreservation of the conchocelis of the marine alga Porphyra yezoensis Ueda (Rhodophyta) in liquid nitrogen. Plant Science, 94(1-2), 215-225.
LaJeunesse, T. C., Lambert, G., Andersen, R. A., Coffroth, M. A., & Galbraith, D. W. (2005). Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. Journal of phycology, 41(4), 880-886.
Lee, S., Seki, S., Katayama, N., & Yoshizaki, G. (2015). Production of viable trout offspring derived from frozen whole fish. Scientific reports, 5, 16045.
Leunufna, S., & Keller, E. (2003). Investigating a new cryopreservation protocol for yams (Dioscorea spp.). Plant Cell Reports, 21(12), 1159-1166.
Leutenegger, S. (1984). Symbiosis in benthic foraminifera; specificity and host adaptations. The Journal of Foraminiferal Research, 14(1), 16-35.
Levin, R. A., Beltran, V. H., Hill, R., Kjelleberg, S., McDougald, D., Steinberg, P. D., & van Oppen, M. J. (2016). Sex, scavengers, and chaperones: transcriptome secrets of divergent Symbiodinium thermal tolerances. Molecular biology and evolution, 33(9), 2201-2215.
Levine, L., Gordon, J. A., & Jencks, W. P. (1963). The relationship of structure to the effectiveness of denaturing agents for deoxyribonucleic acid. Biochemistry, 2(1), 168-175.
Lin, C., & Tsai, S. (2012). The effect of chilling and cryoprotectants on hard coral (Echinopora spp.) oocytes during short-term low temperature preservation. Theriogenology, 77(6), 1257-1261.
Lin, C., Han, C.-C., & Tsai, S. (2013). Effect of thermal injury on embryos of banded coral shrimp (Stenopus hispidus) under hypothermal conditions. Cryobiology, 66(1), 3-7.
Lin, C., Zhang, T., Kuo, F., & Tsai, S. (2011). Studies on oocytes chilling sensitivity in the context of ATP response of two gorgonian coral species (J. juncea and J. fragilis). CryoLetters, 32, 141-147.
Liu, C., Wu, G., Huang, X., Liu, S., & Cong, B. (2012). Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles, 16(3), 419-425.
Liu, H., Yu, W., Dai, J., Gong, Q., Yang, K., & Lu, X. (2004). Cryopreservation of protoplasts of the alga Porphyra yezoensis by vitrification. Plant Science, 166(1), 97-102.
Liu, J., Woods, E. J., Agca, Y., Critser, E. S., & Critser, J. K. (2000). Cryobiology of rat embryos II: A theoretical model for the development of interrupted slow freezing procedures. Biology of reproduction, 63(5), 1303-1312.
Lorenz, M., Friedl, T., & Day, J. G. (2005). Maintenance of Actively Metabolizing Microalgal Cultures. Algal culturing techniques, 145.
Lubzens, E., Daube, N., Pekarsky, I., Magnus, Y., Cohen, A., Yusefovich, F., & Feigin, P. (1997). Carp (Cyprinus carpio L.) spermatozoa cryobanks—strategies in research and application. Aquaculture, 155(1-4), 13-30.
Lyons, J. M. (1973). Chilling injury in plants. Annual review of plant physiology, 24(1), 445-466.
MacPhee, D. J. (2010). Methodological considerations for improving Western blot analysis. Journal of pharmacological and toxicological methods, 61(2), 171-177.
Marcotte, E. M., Pellegrini, M., Ng, H.-L., Rice, D. W., Yeates, T. O., & Eisenberg, D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science, 285(5428), 751-753.
Mazur, P. (1977). Slow-freezing injury in mammalian cells. The freezing of mammalian embryos, 52, 42-49.
Mazur, P. (1990). Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell biophysics, 17(1), 53-92.
Mazur, P., Leibo, S., & Chu, E. (1972). A two-factor hypothesis of freezing injury: evidence from Chinese hamster tissue-culture cells. Experimental cell research, 71(2), 345-355.
McAuley, P. (1985). The cell cycle of symbiotic Chlorella. I. The relationship between host feeding and algal cell growth and division. Journal of cell science, 77(1), 225-239.
Meryman, H. T. (1974). Freezing injury and its prevention in living cells. Annual review of biophysics and bioengineering, 3(1), 341-363.
Mitbavkar, S., & Anil, A. C. (2006). Cell damage and recovery in cryopreserved microphytobenthic diatoms. Cryobiology, 53(1), 143-147.
Morris, G. (1978). Cryopreservation of 250 strains of Chlorococcales by the method of two-step cooling. British Phycological Journal, 13(1), 15-24.
Morris, G. (1981). Cryopreservation: an introduction to cryopreservation in culture collections: Institute of Terrestrial Ecology.
Morris, G., & Canning, C. E. (1978). The cryopreservation of Euglena gracilis. Microbiology, 108(1), 27-31.
Morschett, H., Reich, S., Wiechert, W., & Oldiges, M. (2016). Simplified cryopreservation of the microalga Chlorella vulgaris integrating a novel concept for cell viability estimation. Engineering in life sciences, 16(1), 36-44.
Müller, J., Day, J. G., Harding, K., Hepperle, D., Lorenz, M., & Friedl, T. (2007). Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using amplified fragment length polymorphism (AFLP). American journal of Botany, 94(5), 799-808.
Muscatine, L., & Porter, J. W. (1977). Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience, 27(7), 454-460.
Ortega-Calvo, J., Mazuelos, C., Hermosín, B., & Sáiz-Jiménez, C. (1993). Chemical composition ofSpirulina and eukaryotic algae food products marketed in Spain. Journal of applied phycology, 5(4), 425-435.
Osório, H. C., Laranjeiro, N. C., Santos, L., & Santos, F. M. (2004). First attempts to cryopreserve strains from the Coimbra Collection of Algae (ACOI) and the use of image analysis to assess viability. Nova Hedwigia, 79(1-2), 227-235.
Panella, L., & Lewellen, R. (2007). Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica, 154(3), 383-400.
Pegg, D. E. (2009). Principles of cryopreservation PreservAtion of HumAn oocytes (pp. 33-45): CRC Press.
Pegg, D. E. (2010). The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology, 60(3), S36-S44.
Pollard, J., & Leibo, S. (1994). Chilling sensitivity of mammalian embryos. Theriogenology, 41(1), 101-106.
Prézelin, B. B., & Haxo, F. T. (1976). Purification and characterization of peridinin-chlorophyll a-proteins from the marine dinoflagellates Glenodinium sp. and Gonyaulax polyedra. Planta, 128(2), 133-141.
Privalov, P., Tiktopulo, E., Venyaminov, S. Y., Griko, Y. V., Makhatadze, G., & Khechinashvili, N. (1989). Heat capacity and conformation of proteins in the denatured state. Journal of molecular biology, 205(4), 737-750.
Quigley, K. M., Willis, B. L., & Bay, L. K. (2017). Heritability of the Symbiodinium community in vertically-and horizontally-transmitting broadcast spawning corals. Scientific reports, 7(1), 8219.
Raison, J. K., & Orr, G. R. (1990). Proposals for a better understanding of the molecular basis of chilling injury. Chilling injury of horticultural crops, 145-164.
Rasala, B. A., Barrera, D. J., Ng, J., Plucinak, T. M., Rosenberg, J. N., Weeks, D. P., Mayfield, S. P. (2013). Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. The Plant Journal, 74(4), 545-556.
Reinhoud, P. J., Uragami, A., Sakai, A., Van Iren, F. (1995) Vitrification of plant cell suspensions. Methods in Molecular Biology, 38:113-20.
Rhodes, L., Smith, J., Tervit, R., Roberts, R., Adamson, J., Adams, S., & Decker, M. (2006). Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology, 52(1), 152-156.
Ricaurte, M., Schizas, N. V., Ciborowski, P., & Boukli, N. M. (2016). Proteomic analysis of bleached and unbleached Acropora palmata, a threatened coral species of the Caribbean. Marine pollution bulletin, 107(1), 224-232.
Robles, V., Cabrita, E., De Paz, P., Cuñado, S., Anel, L., & Herráez, M. (2004). Effect of a vitrification protocol on the lactate dehydrogenase and glucose-6-phosphate dehydrogenase activities and the hatching rates of Zebrafish (Danio rerio) and Turbot (Scophthalmus maximus) embryos. Theriogenology, 61(7-8), 1367-1379.
Robles, V., Cabrita, E., Fletcher, G., Shears, M., King, M., & Herráez, M. (2005). Vitrification assays with embryos from a cold tolerant sub-arctic fish species. Theriogenology, 64(7), 1633-1646.
Saks, N. M. (1978). The preservation of salt marsh algae by controlled liquid nitrogen freezing. Cryobiology, 15(5), 563-568.
Salinas-Flores, L., Adams, S., & Lim, M. (2008). Determination of the membrane permeability characteristics of Pacific oyster, Crassostrea gigas, oocytes and development of optimized methods to add and remove ethylene glycol. Cryobiology, 56(1), 43-52.
Santiago-Vázquez, L. Z., Newberger, N. C., & Kerr, R. G. (2007). Cryopreservation of the dinoflagellate symbiont of the octocoral Pseudopterogorgia elisabethae. Marine Biology, 152(3), 549-556.
Schlesinger, D. A., & Shuter, B. J. (1981). Patterns of growth and cell composition of freshwater algae in light‐limited continuous cultures. Journal of phycology, 17(3), 250-256.
Selman, H. (2005). Vitrification versus conventional cryopreservation technique. Middle East Fertility Society Journal, 10(3), 207-209.
Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature biotechnology, 22(12), 1567.
Sheih, I.-C., Wu, T.-K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100(13), 3419-3425.
Shields, R. J., & Lupatsch, I. (2012). Algae for aquaculture and animal feeds. J Anim Sci, 21, 23-37.
Shikina, S., Chiu, Y.-L., Chung, Y.-J., Chen, C.-J., Lee, Y.-H., & Chang, C.-F. (2016). Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis. Scientific reports, 6, 25868.
Singh, S. P. (2001). Broadening the genetic base of common bean cultivars. Crop Science, 41(6), 1659-1675.
Smith, A. U., Polge, C. and Smiles, J. (1951). Microscopic observation of living cells during freezing and thawing. Journal of the Royal Microscopical Society, 71, 168-195.
Smith, D. C., & Douglas, A. E. (1987). The biology of symbiosis: Edward Arnold (Publishers) Ltd.
Stat, M., Carter, D., & Hoegh-Guldberg, O. (2006). The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspectives in Plant Ecology, Evolution and Systematics, 8(1), 23-43.
Stoof-Leichsenring, K. R., Herzschuh, U., Pestryakova, L. A., Klemm, J., Epp, L. S., & Tiedemann, R. (2015). Genetic data from algae sedimentary DNA reflect the influence of environment over geography. Scientific reports, 5, 12924.
Strauss Jr, J. H., Kelly, R. B., & Sinsheimer, R. L. (1968). Denaturation of RNA with dimethyl sulfoxide. Biopolymers: Original Research on Biomolecules, 6(6), 793-807.
Sukenik, A., & Wahnon, R. (1991). Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbana. Aquaculture, 97(1), 61-72.
Takahashi, S., Whitney, S., Itoh, S., Maruyama, T., & Badger, M. (2008). Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured Symbiodinium. Proceedings of the National Academy of Sciences, 105(11), 4203-4208.
Tanniou, A., Turpin, V., & Lebeau, T. (2012). Comparison of cryopreservation methods for the long term storage of the marine diatom Haslea ostrearia (simonsen). Cryobiology, 65(1), 45-50.
Tao, J., Du, J., Kleinhans, F., Critser, E., Mazur, P., & Critser, J. (1995). The effect of collection temperature, cooling rate and warming rate on chilling injury and cryopreservation of mouse spermatozoa. Journal of reproduction and fertility, 104(2), 231-236.
Taylor, R., & Fletcher, R. L. (1998). Cryopreservation of eukaryotic algae–a review of methodologies. Journal of applied phycology, 10(5), 481-501.
Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822.
Tredici, M., Biondi, N., Ponis, E., Rodolfi, L., & Zittelli, G. C. (2009). Advances in microalgal culture for aquaculture feed and other uses New technologies in aquaculture (pp. 610-676): Elsevier.
Tsai, S., & Lin, C. (2012). Advantages and applications of cryopreservation in fisheries science. Brazilian archives of biology and technology, 55(3), 425-434.
Tsai, S., Chong, G., Meng, P. J., & Lin, C. (2018). Sugars as supplemental cryoprotectants for marine organisms. Reviews in Aquaculture, 10(3), 703-715.
Tsai, S., Yen, W., Chavanich, S., Viyakarn, V., & Lin, C. (2015). Development of cryopreservation techniques for gorgonian (Junceella juncea) oocytes through vitrification. PloS one, 10(5), e0123409.
Tsuru, S. (1973). Preservation of marine and fresh water algae by means of freezing and freeze-drying. Cryobiology, 10(5), 445-452.
Tzovenis, I., Triantaphyllidis, G., Naihong, X., Chatzinikolaou, E., Papadopoulou, K., Xouri, G., & Tafas, T. (2004). Cryopreservation of marine microalgae and potential toxicity of cryoprotectants to the primary steps of the aquacultural food chain. Aquaculture, 230(1-4), 457-473.
Valojerdi, M. R., Eftekhari-Yazdi, P., Karimian, L., Hassani, F., & Movaghar, B. (2009). Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. Journal of assisted reproduction and genetics, 26(6), 347-354.
Van de Peer, Y., Rensing, S. A., Maier, U.-G., & De Wachter, R. (1996). Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proceedings of the National Academy of Sciences, 93(15), 7732-7736.
Van der Meer, J. P., & Simpson, F. (1984). Cryopreservation of Gracilaria tikvahiae (Rhodophyta) and other macrophytic marine algae. Phycologia, 23(2), 195-202.
Viveiros, A., Lock, E., Woelders, H., & Komen, J. (2001). Influence of cooling rates and plunging temperatures in an interrupted slow-freezing procedure for semen of the African catfish, Clarias gariepinus. Cryobiology, 43(3), 276-287.
Voolstra, C. R., Schnetzer, J., Peshkin, L., Randall, C. J., Szmant, A. M., & Medina, M. (2009). Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC genomics, 10(1), 627.
Wang, B., Zhang, E., Gu, Y., Ning, S., Wang, Q., & Zhou, J. (2011). Cryopreservation of brown algae gametophytes of Undaria pinnatifida by encapsulation–vitrification. Aquaculture, 317(1-4), 89-93.
Weston, A. J., Dunlap, W. C., Shick, J. M., Klueter, A., Iglic, K., Vukelic, A., Trick, C. G. (2012). A profile of an endosymbiont-enriched fraction of the coral Stylophora pistillata reveals proteins relevant to microbial-host interactions. Molecular & Cellular Proteomics, mcp. M111. 015487.
Wilmut, I. (1972). The effect of cooling rate, warming rate, cryoprotective agent, and stage of development on survival of mouse embryos during freezing and thawing. Life Sci., 11, 1071-1079.
Woods, E., Liu, J., Gilmore, J., Reid, T., Gao, D., & Critser, J. (1999). Determination of human platelet membrane permeability coefficients using the Kedem–Katchalsky formalism: estimates from two- vs three-parameter fits. Cryobiology, 38(3), 200-208.
Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R., & Grossman, A. R. (2013). Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity. Journal of phycology, 49(3), 447-458.
Yang, D., & Li, W. (2016). Methanol-promoted lipid remodelling during cooling sustains cryopreservation survival of Chlamydomonas reinhardtii. PloS one, 11(1), e0146255.
Zhang, Q., Cong, Y., Qu, S., Luo, S., & Yang, G. (2008). Cryopreservation of gametophytes of Laminaria japonica (Phaeophyta) using encapsulation-dehydration with two-step cooling method. Journal of Ocean University of China, 7(1), 65-71.
Zhang, Y., Zhang, S., Liu, X., Xu, Y., Hu, J., Xu, Y., Chen, S. (2005). Toxicity and protective efficiency of cryoprotectants to flounder (Paralichthys olivaceus) embryos. Theriogenology, 63(3), 763-773.
Zheng, L., Lu, Z., Zhang, Q., Li, T., & Song, L. (2018). A fluorescence ratio-based method to determine microalgal viability and its application to rapid optimization of cryopreservation. Cryobiology, 81, 27-33.
Zhu, J., Dong, C.-H., & Zhu, J.-K. (2007). Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Current opinion in plant biology, 10(3), 290-295.
Zilli, J. E., Baraúna, A. C., da Silva, K., De Meyer, S. E., Farias, E. N., Kaminski, P. E., Camacho, N. N. (2014). Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense. International journal of systematic and evolutionary microbiology, 64(12), 3950-3957.
Zilli, L., Beirão, J., Schiavone, R., Herraez, M. P., Gnoni, A., & Vilella, S. (2014). Comparative proteome analysis of cryopreserved flagella and head plasma membrane proteins from sea bream spermatozoa: effect of antifreeze proteins. PloS one, 9(6), e99992.
趙怡穎 (2017)。 柳珊瑚內共生藻玻璃化與可程式冷凍保存。國立東華大學碩士論文。1-70頁。
胡瓊止 (2016)。 美人蝦(Stenopus hispidus)胚胎低溫保存校正基因之分析研究。國立東華大學碩士論文。1-72頁。
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *