帳號:guest(3.143.22.19)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:洪羽陞
作者(英文):Yu-Sheng Hong
論文名稱:海洋酸化和全球暖化對於藍帶矛吻海龍(Doryrhamphus excisus excisus (Kaup, 1856)初期發育之影響暨探討循環水養殖系統中的酸化現象
論文名稱(英文):Effects of ocean acidification and global warming on early development of bluestipe pipefish, Doryrhamphus excisus excisus (Kaup, 1856) and referring to aquatic acidification in recirculating aquaculture systems
指導教授:呂明毅
指導教授(英文):Ming-Yih Leu
口試委員:楊順德
張桂祥
呂明毅
口試委員(英文):Shuenn-Der Yang
Kwee-Siong Tew
Ming-Yih Leu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610563010
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:71
關鍵詞:全球暖化海洋酸化初期發育海龍心臟功能循環水養殖系統
關鍵詞(英文):global warmingocean acidificationearly developmentcardiac functionpipefishrecirculating aquaculture systems
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本研究探討藍帶矛吻海龍(Doryrhamphus excisus excisus)在大氣CO2濃度提高所產生之海洋酸化和全球暖化情境下的影響,並利用解剖顯微鏡和骨骼染色法(透明魚製作)進行觀察。本研究經過重複組實驗後測試不同pCO2和溫度的雙因子交互作用下針對其初期生命階段的活存率和骨骼發育的影響,溫度、pCO2實驗分別設定為26.0、33.0 °C兩個處理組與400、1400、2000 atm三個處理組,短期暴露的結果顯示在CO2濃度升高的環境條件下,近未來(2100年)的海水暖化與酸化對於仔魚的活存率、心跳率、血流量和骨骼發育並沒有顯著的影響(P > 0.05),但遠未來(2300年)的酸化情境則降低了仔魚的活存率、骨骼發育和心臟功能,對其具有潛在的威脅;而經歷8天暴露後發現多數骨骼的長度都低於控制組,顯示出酸化延遲了仔魚的發育階段,使牠們必須將成長的能量分配給酸鹼緩衝機制以維持生理機能。溫度和pCO2對於心跳率有顯著的交互作用,但對於血流量沒有顯著交互作用。仔魚可能對於酸鹼因子的耐受性高於溫度因子。另外以國立海洋生物博物館的珊瑚王國池和大洋池檢測人工養殖條件下的循環水養殖系統(recirculating aquaculture systems, RAS)中CO2濃度和生物量所造成的影響,透過攝食量、重量與耗氧量等公式轉換後結果顯示,兩個池區的酸鹼緩衝能力相同,但大洋池的pCO2濃度大於珊瑚池,耗氧量增加使CO2濃度升高,同時影響了水中的碳酸鹽緩衝系統。這項觀測結果證實循環水養殖系統會因生物量增加導致水中CO2的濃度累積進而改變水中的碳酸化學,CO2長期累積的結果將導致海水酸化問題,對於人工養殖環境生物的健康造成潛在的影響。本研究的結果提供pCO2對於硬骨魚類初期發育和RAS系統養殖模式的潛在影響,期望能更了解未來的CO2環境問題。
Doryrhamphus excisus excisus larvae were exposed at increased CO2 concentration that caused global warming and ocean acidification and illustrated by dissecting microscope and histochemistry stain (transparent fish). In this study, the effects of pH and temperature on larval survival rate and osteology development were assessed in a replicated experiment repeated on two factors interaction. The effects of ambient temperature (26.0 and 33.0) and pCO2 (400, 1400 and 2000 atm) interaction on survival rate, heart beating, blood flow and osteology development of larvae were demonstrated. The result showed that under increaced CO2 condition, did not have effect on warming and acidification situation in near future (A.D. 2100) (P > 0.05), but decreased survival rate, osteology development and cardic function that may cause potential threat in far future (A.D. 2300). For 8 days exposed at 26 °C and three pCO2, the length of most bone were shorter than control. It suggested that acidification may delay the development of D. excisus excisus because they allocate energy for acid-base buffer function to maintain their physiological function. However, pCO2 and temperature had signification interaction effect on heart beating, but not on blood flow. The larvae might had tolerance toward pCO2. To identify the effect of CO2 concentration and biomass on artificial aquaculture with recirculating aquaculture systems (RAS), the Coral Kingdom Aquarium and Open Ocean Aquarium of National Museum of Marine Biology and Aquarium (NMMBA) were investigated. The result was transformed by formula of feed intake, weight and oxygen consumption. The result showed the same buffer capacity of the two aquarium but pCO2 concentration in Open Ocean Aquarium was higher than Coral Kingdom Aquarium. While oxygen consumption increased, simultaneously, CO2 concentration will increased and alter the carbonate buffer system. The investigation confirmed that increased biomass result in CO2 accumulation in RAS and change the carbonate chemistry. It can cause acidification and bring about potential health problem in aquaculture animals. This study showed the potential threat of pCO2 on teleost fish larvae, and aquaculture with RAS to figure out the CO2 problem in future.
摘要 III
Abstract V
第一章 前言 1
1.1氣候變遷 1
1.2全球暖化現象 1
1.2.1全球暖化和二氧化碳分壓(pCO2)對於全球之衝擊 2
1.2.2 暖化影響海洋環境之相關研究 2
1.3 海洋酸化現象 3
1.3.2 對於鈣化生物的影響 4
1.3.3 對於無脊椎動物的影響 4
1.3.4 對於硬骨魚類的影響 5
1.3.5仔稚魚受到酸化條件的影響 5
1.4海洋碳酸化學 6
1.5藍帶矛吻海龍之文獻回顧 7
1.5.1 藍帶矛吻海龍 7
1.5.2 藍帶矛吻海龍分布 7
1.5.3 藍帶矛吻海龍產卵與孵化 7
1.5.4藍帶矛吻海龍的初期發育 8
1.6 循環水養殖系統及其潛在問題 8
1.7研究目的 9
第二章 材料方法 11
2.1實驗設計 11
2.2實驗物種培育 11
2.2.1親魚培育 11
2.2.2仔魚收集 11
2.3水質檢測 12
2.3.1 水溫檢測 12
2.3.2 鹽度檢測 12
2.3.3 溶氧量檢測 12
2.3.4 pH值檢測 13
2.4暖化和酸化對藍帶矛吻海龍仔魚活存率之影響 13
2.4.1實驗所使用之溫度及pCO2 (pH)值設定 13
2.4.2暖化和酸化之實驗材料和方法 14
2.4.3總鹼度分析 14
2.4.4碳酸化學分析 15
2.5暖化和酸化對藍帶矛吻海龍仔魚生長和骨骼發育之影響 15
2.5.1 固定 15
2.5.2水洗 16
2.5.3漂白 16
2.5.4脫水 16
2.5.5軟骨染色 16
2.5.6中和(再水化) 16
2.5.7去除肌肉(透明化) 16
2.5.8硬骨染色 16
2.5.9脫色透明 17
2.5.10保存 17
2.6 暖化和酸化對藍帶矛吻海龍仔魚心臟功能之影響 17
2.7循環水養殖系統中的海水酸化現象 17
2.7.1 水質參數 17
2.7.2水樣採集 17
2.7.3總鹼度與碳酸化學 18
2.8 統計分析 18
第三章 結果 19
3.1 仔魚收集結果 19
3.2暖化和酸化對藍帶矛吻海龍仔魚活存率之影響 19
3.3暖化和酸化對藍帶矛吻海龍仔魚生長和骨骼發育之影響 19
3.4暖化和酸化對藍帶矛吻海龍仔魚心臟功能之影響 21
3.4.1暖化和酸化對仔魚心跳率之影響 21
3.4.2暖化和酸化對仔魚血流量之影響 21
3.5 循環水養殖系統(RAS)的水質和碳酸化學參數檢測結果(以國立海洋生物博物館之主珊瑚池與大洋池為例) 22
第四章 討論 23
4.1暖化和酸化對於海龍仔魚活存率之影響 23
4.1.1暖化因子對於海龍仔魚活存率的影響 23
4.1.2酸化因子對於海龍仔魚活存率的影響 24
4.1.3 小結—暖化和酸化對於海龍仔魚活存率的影響 25
4.2暖化和酸化對於海龍仔魚生長和骨骼發育的影響 25
4.3暖化和酸化對於海龍仔魚心臟功能的影響 27
4.4氣候變遷對仔稚魚研究之探討與未來期許 28
4.5 循環水養殖系統(RAS)與CO2關聯性(以國立海洋生物博物館之主珊瑚池與大洋池為例) 29
4.6水產養殖業界相關研究之討論 30
第五章 結論 33
參考文獻 35
Appendix 67
丁楓峻, 謝恆毅, 蔡萬生 (2011) 海水酸化的威脅與對策。水產試驗所澎湖海洋生物研究中心。水試專訊36, 53-55。
山元憲一, 島隆夫, 山下秀幸, 綿石慶太 (1990). 海産硬骨魚類36種の安静状態での酸素消費量と体重の関係. 水産増殖 38, 41-45.
吉川貴志. (2004). 二酸化炭素が海産魚卵および仔稚魚に与える影響. 長崎大学博士論文.
吉川貴志, 長谷川一幸, 箕輪康, 中村幸雄, 喜田潤 (2011). ミズクラゲ (Aurelia aurita) エフィラに及ぼすCO2の急性影響. 海洋生物環境研究所研究報告 14, 19-24.
邵廣昭 (2019) 台灣魚類資料庫 網路電子版 網址: http://fishdb.sinica.edu.tw/chi/species.php?science=Doryrhamphus%20excisus&tree=y
涂煜昕 (2017) 藍帶矛吻海龍(Doryrhamphus excisus excisus)的人工繁殖及初期發育。國立東華大學海洋生物研究所碩士論文。
陳汾蘭 (2001) 推動海上箱網養殖之成果。行政院農委會。農政與農情第107期 網址: https://www.coa.gov.tw/ws.php?id=2603
鄭明忠, 江玉瑛, 何源興, 張文炳, 彭仁君, 陳文義 (2012). 棘頰海葵魚之初期骨骼發育。行政院農委會水產試驗所。水產研究 20, 37-48。
嚴宏洋 (2018). 海水酸化魚兒失聰,中央研究院週報 1327, 5-6。
Allan, B.J., Domenici, P., Watson, S.A., Munday, P.L., McCormick, M.I., 2017. Warming has a greater effect than elevated CO2 on predator–prey interactions in coral reef fish. Proceedings of the Royal Society B: Biological Sciences 284, 20170784.
Altan, Ö., Pabuçcuoğlu, A., Altan, A., Konyalioğlu, S., Bayraktar, H., 2003. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. British Poultry Science 44, 545-550.
Anthony, K.R., Kline, D.I., Diaz-Pulido, G., Dove, S., Hoegh-Guldberg, O., 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences 105, 17442-17446.
Atienza, D., Sabatés, A., Isari, S., Saiz, E., Calbet, A., 2016. Environmental boundaries of marine cladoceran distributions in the NW Mediterranean: Implications for their expansion under global warming. Journal of Marine Systems 164, 30-41.
Bakun, A., Black, B.A., Bograd, S.J., Garcia-Reyes, M., Miller, A.J., Rykaczewski, R.R., Sydeman, W.J., 2015. Anticipated effects of climate change on coastal upwelling ecosystems. Current Climate Change Reports 1, 85-93.
Baumann, H., Talmage, S.C., Gobler, C.J., 2012. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change 2, 38-41.
Beamish, F.W.H., 1964. Respiration of fishes with special emphasis on standard oxygen consumption: II. Influence of weight and temperature on respiration of several species. Canadian Journal of Zoology 42, 177-188.
Becker, C.D., Genoway, R.G., 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4, 245-256.
Berlinsky, D.L., Taylor, J.C., Howell, R.A., Bradley, T.M., Smith, T.I., 2004. The effects of temperature and salinity on early life stages of black sea bass Centropristis striata. Journal of the World Aquaculture Society 35, 335-344.
Bignami, S., Sponaugle, S., Cowen, R.K., 2013. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Global Change Biology 19, 996-1006.
Blidariu, F., Grozea, A., 2011. Increasing the economical efficiency and sustainability of indoor fish farming by means of aquaponics-review. Scientific Papers Animal Science and Biotechnologies 44, 1-8.
Boley, A., Müller, W. R., Haider, G., 2000. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacultural Engineering 22, 75-85.
Brander, K., 2010. Impacts of climate change on fisheries. Journal of Marine Systems 79, 389-402.
Brill, R.W., 1979. Effect of Body Size on the Standard Metabolic-Rate of Skipjack Tuna, Katsuwonus-Pelamis. Fishery Bulletin 77, 494-498.
Brown, D.J.A. and Sadler, K., 1989. Fish survival in acid waters. Acid Toxicity and Aquatic Animals 34, 31-44.
Carls, M.G., Rice, S. D., Hose, J. E., 1999. Sensitivity of fish embryos to weathered crude oil: Part I. Low‐level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environmental Toxicology and Chemistry: An International Journal 18, 481-493.
Chen, C.T.A., Lui, H.K., Hsieh, C.H., Yanagi, T., Kosugi, N., Ishii, M., Gong, G.C., 2017. Deep oceans may acidify faster than anticipated due to global warming. Nature Climate Change 7, 890-894.
Cheng, L., Abraham, J., Hausfather, Z., and Trenberth, K. E., 2019. How fast are the oceans warming? Science 363, 128-129.
Chivers, D.P., McCormick, M.I., Nilsson, G.E., Munday P.L., Watson, SA., Meekan, M.G., Mitchell, M.D., Corkill, K.C. and Ferrari, M.CO., 2014. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Global Change Biology 20, 515-522.
Collin, S.P., Collin, H.B., 1999. The foveal photoreceptor mosaic in the pipefish, Corythoichthyes paxtoni (Syngnathidae, Teleostei). Histology and Histopathology 14, 369-382.
Coll-Lladó, C., Giebichenstein, J., Webb, P.B., and Bridges, C.R., 2018. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Scientific Reports 8, 1-10.
Cox, D.K., Gibbons, J.W., Sharitz, R.R., 1974. Effects of three heating rates on the critical thermal maximum of bluegill. In J.W. Gibbons and R.R. Sharitz (eds.), Thermal Ecology II U.S. National Technical Information Service, Springfield, Virginia. pp 158-163.
Craik, J. C. A. and Harvey, S.M., 1987. The causes of buoyancy in eggs of marine teleosts. Journal of the Marine Biological Association of the United Kingdom 67, 169-182.
Devine, B.M., Munday, P.L., Jones, G.P., 2012. Homing ability of adult cardinalfish is affected by elevated carbon dioxide. Oecologia 168, 269-276.
Dickson, A. G., Millero, F. J., 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers 34, 1733-1743.
Dixson, D.L., Jennings, A.R., Atema, J., Munday, P.L., 2015. Odor tracking in sharks is reduced under future ocean acidification conditions. Global Change Biology 21, 1454-1462.
Domenici, P., Allan, B., McCormick, M.I., Munday, P.L., 2011. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biology Letters 8, 78-81.
Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1, 169-192.
Dong, Y.W., Yu, S.S., Wang, Q.L., Dong, S.L., 2011. Physiological responses in a variable environment: relationships between metabolism, hsp and thermotolerance in an intertidal-subtidal species. PLoS ONE 6, e26446.
Dore, J.E., Lukas, R., Sadler, D.W., Church, M.J., Karl, D.M., 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences 106, 12235-12240.
Dupont, S., Havenhand, J., Thorndyke, W., Peck, L., Thorndyke, M., 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series 373, 285-294.
Dupont, S., Lundve, B., Thorndyke, M., 2010. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 314, 382-389.
Ebeling, J.M., Timmons, M.B., 2012. Recirculating aquaculture systems, in: Tidwell J.H. (Eds.), Aquaculture Production Systems 245-277. John Wiley and Sons, Inc. New York, USA.
Edmond, J.M., Gieskes, J.M.T.M., 1970. On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions. Geochimica et Cosmochimica Acta 34, 1261-1291.
Ekström, A., Brijs, J., Clark, T.D., Gräns, A., Jutfelt, F., Sandblom, E., 2016. Cardiac oxygen limitation during an acute thermal challenge in the European perch: effects of chronic environmental warming and experimental hyperoxia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 311, R440-R449.
Ellis, R.P., Urbina, M.A., Wilson, R.W., 2017. Lessons from two high CO2 worlds–future oceans and intensive aquaculture. Global Change Biology 23, 2141-2148.
Esbaugh, A.J., Heuer, R., Grosell, M., 2012. Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta. Journal of Comparative Physiology B 182, 921-934.
Fain, S.J., Quiñones, M., Álvarez-Berríos, N.L., Parés-Ramos, I. K., Gould, W.A. 2018. Climate change and coffee: assessing vulnerability by modeling future climate suitability in the Caribbean island of Puerto Rico. Climatic change 146, 175-186.
Flynn, E.E., Bjelde, B.E., Miller, N.A., Todgham, A.E., 2015. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish. Conservation Physiology 3, cov033.
Franke, A., Clemmesen, C., 2011. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 8, 3697-3707.
Froese, R., Pauly D., eds. 2019. Fishbase. Anailable at https://www.fishbase.se/summary/5969
Frommel, A.Y., Maneja, R., Lowe, D., Malzahn, A.M., Geffen, A.J., Folkvord, A., Piatkowski, U., Reusch, T.B.H., Clemmesen, C., 2012. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nature Climate Change 2, 42-46.
Frommel, A.Y., Maneja, R., Lowe, D., Pascoe, C.K., Geffen, A.J., Folkvord, A., Piatkowski, U., Clemmesen, C., 2014. Organ damage in Atlantic herring larvae as a result of ocean acidification. Ecological Applications 24, 1131-1143.
Frommel, A.Y., Margulies, D., Wexler, J.B., Stein, M.S., Scholey, V.P., Williamson, J.E., Bromhead, D., Nicol, S., Havenhand, Jon., 2016. Ocean acidification has lethal and sub-lethal effects on larval development of yellowfin tuna, Thunnus albacares. Journal of Experimental Marine Biology and Ecology 482, 18-24.
Gattuso, J.P., Hansson, L., (Eds.), 2011. Ocean acidification. Oxford University Press 326 pp. Oxford University Press Inc, New York, USA.
Gattuso, J.P, Magnan, A., Billé, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D., Bopp, L., Cooley, S.R., Eakin, C.M., 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722.
Gazeau, F., Quiblier, C., Jansen, J.M., Gattuso, J.P., Middelburg, J.J., Heip, C.H., 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34, L07603.
Gobler, C.J., Merlo, L.R., Morrell, B.K., Griffith, A.W., 2018. Temperature, Acidification, and Food Supply Interact to Negatively Affect the Growth and Survival of the Forage Fish, Menidia beryllina (Inland Silverside), and Cyprinodon variegatus (Sheepshead Minnow). Frontiers in Marine Science 5, 86.
Grassle, J.F., 1987. The ecology of deep-sea hydrothermal vent communities. In Advances in Marine Biology 23, 301-362. Academic Press Inc., London, UK.
Green, B.S., Fisher, R., 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. Journal of Experimental Marine Biology and Ecology 299, 115-132.
Guderley, H., Blier, P., 1988. Thermal acclimation in fish: conservative and labile properties of swimming muscle. Canadian Journal of Zoology 66, 1105-1115.
Hamilton, T. J., Holcombe, A., Tresguerres, M., 2014. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proceedings of the Royal Society B: Biological Sciences 281, 20132509.
Hansson, I., 1973. A new set of acidity constants for carbonic acid and boric acid in sea water. In: Deep Sea Research and Oceanographic Abstracts 20, 461-478 Elsevier, Amsterdam, Nederland.
Harvey, B.P., Gwynn‐Jones, D., Moore, P.J., 2013. Meta‐analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution 3, 1016-1030.
Havenhand, J. N., Buttler, F. R., Thorndyke, M. C., Williamson, J. E., 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current Biology 18, R651-R652.
Heuer, R.M., Grosell, M. 2014. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 307, R1061-R1084.
Hickman Jr, C.P., 1959. The osmoregulatory role of the thyroid gland in the starry flounder, Platichthys stellatus. Canadian Journal of Zoology 37, 997-1060.
Howell, B.R., Day, O.J., Ellis, T., Baynes, S.M., 1998. Early life stages of farmed fish. In: Black, K.D. and Pickering, A.D. (Eds). Biology of Farmed Fish 27–65. Academic Press, Sheffield, UK.
Huijbers, C. M., Nagelkerken, I., Lössbroek, P. A., Schulten, I. E., Siegenthaler, A., Holderied, M. W., Simpson, S. D., 2012. A test of the senses: fish select novel habitats by responding to multiple cues. Ecology 93, 46-55.
Hurst, T.P., Laurel, B.J., Hanneman, E., Haines, S.A., Ottmar, M.L., 2017. Elevated CO2 does not exacerbate nutritional stress in larvae of a Pacific flatfish. Fisheries Oceanography 26, 336-349.
Ikeda, T., 1970. Relationship between respiration rate and body size in marine plankton animals as a function of the temperature of habitat. Bulletin of the Faculty of Fisheries Hokkaido University 21, 91-112.
IPCC AR2, 1996: Climate Change 1995: A report of the Intergovernmental Panel on Climate Change, Second Assessment Report of the Intergovernmental Panel on Climate Change.
IPCC AR3 WG1, Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., (ed.), 2001. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press.
IPCC AR4, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K. and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.
IPCC AR5, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K. and Meyer L.A. (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
IPCC COP 21, 2018 Global warming of 1.5°C. World Meteorological Organization, Geneva, Switzerland. url: www.ipcc.ch/report/sr15/
Johnson, N.C., Xie, S.P., 2010. Changes in the sea surface temperature threshold for tropical convection. Nature Geoscience 3, 842-845.
Jokiel, P.L., Rodgers, K.S., Kuffner, I.B., Andersson, A.J., Cox, E.F., Mackenzie, F.T., 2008. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27, 473-483.
Jokiel, P.L., Jury, C.P., Kuffner, I.B., 2016. Coral calcification and ocean acidification. In: Coral Reefs at the Crossroads 7-45. Springer, Dordrecht, Nederland.
Joyce, W., Axelsson, M., Egginton, S., Farrell, A.P., Crockett, E.L., O’Brien, K.M., 2018. The effects of thermal acclimation on cardio-respiratory performance in an Antarctic fish (Notothenia coriiceps). Conservation Physiology 6, coy069.
Jutfelt, F., de Souza, K. B., Vuylsteke, A., Sturve, J., 2013. Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8, e65825.
Keeling, R,F., Keeling, C.D., 2019. Atmospheric Monthly in situ CO2 Data - Mauna Loa Observatory, Hawaii. In Scripps CO2 Program Data. UC San Diego Library Digital Collections http://doi.org/10.6075/J08W3BHW
Kikkawa, T., Ishimatsu, A., Kita, J., 2003. Acute CO2 tolerance during the early developmental stages of four marine teleosts. Environmental Toxicology: An International Journal 18, 375-382.
Kitano, Y., Okumura, M., Idogaki, M., 1975. Incorporation of sodium, chloride and sulfate with calcium carbonate. Geochemical Journal 9, 75-84.
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E., Funder, S., Larsen, N.K., Bamber, J.L., Colgan, W., Van den Broeke, M., Nuth, C., Schomacker, A., Andresen, C.S., Willerslev, E., Kjær, K.H., Siggaard-Andersen, M. L., 2015. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 528, 396-400.
Kroeker, K.J, Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M., Gattuso, J.P., 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19, 1884-1896.
Kurihara, H., 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373, 275-284.
Langdon, C., Atkinson, M. J., 2005. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research 110, C09S07.
Ling, S.W., Mumaw, L., 1977. Aquaculture in Southeast Asia. A historical overview. A Washington Sea Grant Publication University of Washington Press, Seattle, USA.
Lupatsch, I., Kissil, G.W., 2005. Feed formulations based on energy and protein demands in white grouper (Epinephelus aeneus). Aquaculture 248, 83-95.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F., 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379-382.
Malvezzi, A.J., Murray, C.S., Feldheim, K.A., DiBattista, J.D., Garant, D., Gobler, C.J., Chapman, D.D., Baumann, H., 2015. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evolutionary Applications 8, 352-362.
Maneja, R.H., Frommel, A.Y., Geffen, A.J., Folkvord, A., Piatkowski, U., Chang, M.Y., Clemmesen, C., 2013. Effects of ocean acidification on the calcification of otoliths of larval Atlantic cod Gadus morhua. Marine Ecology Progress Series 477, 251-258.
Martins, C.I.M., Eding, E.H., Verdegem, M.C., Heinsbroek, L.T., Schneider, O., Blancheton, J.P., Roque d’Orbcastel, E., Verreth, J. A.J., 2010., New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering 43, 83-93.
Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E.F., Pan, M., Sheffield, J., Samaniego, L., 2018. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3°C. Hydrology and Earth System Sciences 22, 1017-1032.
Marubini, F., Ferrier–Pages, C., Cuif, J.P., 2003. Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 179-184.
Masser, M.P., Rakocy, J., Losordo, T.M., 1999. Recirculating aquaculture Tank production systems. Management of recirculating systems. SRAC Publication No. 452.
McDonnell, L.H., Chapman, L.J., 2016. Effects of thermal increase on aerobic capacity and swim performance in a tropical inland fish. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 199, 62-70.
McKim, J.M., 1977. Evaluation of tests with early life stages of fish for predicting long-term toxicity. Journal of the Fisheries Board of Canada 34, 1148-1154.
Mehrbach, C., Culberson, C. H., Hawley, J. E., Pytkowicx, R.M., 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnology and Oceanography 18, 897-907
Melzner, F., Gutowska, M.A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M.C., Bleich. M., Pörtner, H.O., 2009. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313-2331.
Messmer, V., Pratchett, M.S., Hoey, A.S., Tobin, A.J., Coker, D.J., Cooke, S.J., Clark, T.D., 2017. Global warming may disproportionately affect larger adults in a predatory coral reef fish. Global Change Biology 23, 2230-2240.
Miller, G., Kroon, F., Metcalfe, S., Munday, P.L., 2015. Temperature is the evil twin: Effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecological Applications 25, 603-620.
Mills, L.S., Bragina, E.V., Kumar, A.V., Zimova, M., Lafferty, D.J., Feltner, J., Davis, B.M., Hackländer, K., Alves, P.C., Good, J.M., Melo-Ferreira, J., Dietz, A., Abramov, A.V., Lopatina, N., Fay, K., 2018. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science 359, 1033-1036.
Montero‐Serra, I., Edwards, M., Genner, M. J., 2015. Warming shelf seas drive the subtropicalization of European pelagic fish communities. Global Change Biology 21, 144-153.
Mosk, V., Thomas, N., Hart, N.S., Partridge, J. C., Beazley, L.D., Shand, J., 2007. Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus. Visual Neuroscience 24, 345-354.
Moya, A., Howes, E.L., Lacoue‐Labarthe, T., Forêt, S., Hanna, B., Medina, M., Munday, P.L., Ong, J.S., Teyssié, J.L., Torda, G., 2016. Near‐future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod Heliconoides inflatus. Global Change Biology 22, 3888-3900.
Moyano, M., Candebat, C., Ruhbaum, Y., Álvarez-Fernández, S., Claireaux, G., Zambonino-Infante, J.L., Peck, M.A., 2017. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. PLoS ONE 12, e0179928.
Munari, M., Matozzo, V., Marin, M.G., 2011. Combined effects of temperature and salinity on functional responses of haemocytes and survival in air of the clam Ruditapes philippinarum. Fish and Shellfish Immunology 30, 1024-1030.
Munday, P.L., Dixson, D.L., Donelson, J.M., Jones, G.P., Pratchett, M.S., Devitsina, G.V., Døving, K.B., 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences 106, 1848-1852.
Munday, P.L., Gagliano, M., Donelson, J.M., Dixson, D.L., Thorrold, S.R., 2011. Ocean acidification does not affect the early life history development of a tropical marine fish. Marine Ecology Progress Series 423, 211-221.
Munday, P.L., Cheal, A.J., Dixson, D.L., Rummer, J.L., Fabricius, K.E., 2014. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Climate Change 4, 487-492.
Munday, P.L., Donelson, J.M., Domingos, J.A., 2017. Potential for adaptation to climate change in a coral reef fish. Global Change Biology 23, 307-317.
Murray, C.S., Malvezzi, A., Gobler, C.J., Baumann, H., 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series 504, 1-11.
Nakabo, T. ed., 2002. Fishes of Japan: with pictorial keys to the species. English edition. Tokai University Press, Tokyo, Japan.
Nilsson, G.E., Dixson, D.L., Domenici, P., McCormick, M.I., Sørensen, C., Watson, S.A., Munday, P.L., 2012. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change 2, 201-204.
Nilsson, G.E., Lefevre, S., 2016. Physiological challenges to fishes in a warmer and acidified future. Physiology 31, 409-417.
NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for June 2019, published online July 2019, retrieved on July 26, 2019 from https://www.ncdc.noaa.gov/sotc/global/201906.
Noble, C., Jones, H.A.C., Damsgård, B., Flood, M.J., Midling, K.Ø., Roque, A., Sæther, B-S., Cottee, S.Y., 2012. Injuries and deformities in fish: their potential impacts upon aquacultural production and welfare. Fish Physiology and Biochemistry 38, 61-83.
Palmer, B. F., Alpern, R J., 1997. Metabolic alkalosis. Journal of the American Society of Nephrology 8, 1462-1469.
Pane, E.F., Barry, J.P., 2007. Extracellular acid–base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Marine Ecology Progress Series 334, 1-9.
Parker, L.M., Ross, P.M., O'connor, W.A., Borysko, L., Raftos, D.A., Pörtner, H.O., 2012. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology 18, 82-92.
Pauly, D., Cheung, W.W., 2018. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Global Change Biology 24, e15-e26.
Pepin, P., 1991. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sciences 48, 503-518.
Perry, D.M., Redman, D.H., Widman Jr, J.C., Meseck, S., King, A., Pereira, J.J., 2015. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops. Ecology and Evolution 5, 4187-4196.
Pistevos, J.C.A., Nagelkerken, I., Rossi, T., Olmos, M., Connell, S.D., 2015. Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports 5, 16293.
Pörtner, H.O., Peck, M.A., 2010. Climate change effects on fishes and fisheries: towards a cause‐and‐effect understanding. Journal of Fish Biology 77, 1745-1779.
Potthoff, T., Kelley, S., Moe, M., Young, F., 1984. Description of porkfish larvae (Anisotremus virginicus, Haemulidae) and their osteological development. Bulletin of Marine Science 34, 21-59.
Radtke, R.L., Shafer, D.J., 1992. Environmental sensitivity of fish otolith microchemistry. Marine and Freshwater Research 43, 935-951.
Rakocy, J., Masser, M.P., Losordo, T., 2016. Recirculating aquaculture Tank production systems: aquaponics-integrating fish and plant culture. SRAC Publication, 454.
Réalis-Doyelle, E., Pasquet, A., Fontaine, P., Teletchea, F., 2018. How climate change may affect the early life stages of one of the most common freshwater fish species worldwide: the common carp (Cyprinus carpio). Hydrobiologia 805, 365-375.
Ren, Z., Mu, C., Li, R., Song, W., Wang, C., 2018. Characterization of a γ‐aminobutyrate type A receptor‐associated protein gene, which is involved in the response of Portunus trituberculatus to CO2‐induced ocean acidification. Aquaculture Research 49, 2393-2403.
Ricker, W.E., 1973. Linear regressions in fishery research. Journal of the Fisheries Board of Canada 30, 409-434.
Ries, J.B., Anderson, M.A., Hill, R.T., 2008. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential proxy for calcite‐aragonite seas in Precambrian time. Geobiology 6, 106-119.
Robertson, D.R., Green, D.G., Victor, B.C., 1988. Temporal coupling of production and recruitment of larvae of a Caribbean reef fish. Ecology 69, 370-381.
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J., Nykvist, B., de Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., Foley, J.A., 2009. A safe operating space for humanity. Nature 461, 472-475.
Rodolfo-Metalpa, R., Martin, S., Ferrier-Pagès, C., Gattuso, J. P., 2010. Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7, 289-300.
Rodriguez-Dominguez, A., Connell, S.D., Baziret, C., Nagelkerken, I., 2018. Irreversible behavioural impairment of fish starts early: Embryonic exposure to ocean acidification. Marine Pollution Bulletin 133, 562-567.
Roos, G., Van Wassenbergh, S., Herrel, A., Adriaens, D., Aerts, P., 2010. Snout allometry in seahorses: insights on optimisation of pivot feeding performance during ontogeny. Journal of Experimental Biology 213, 2184-2193.
Ross, P.M., Parker, L., O’Connor, W.A., Bailey, E.A., 2011. The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water 3, 1005-1030.
Rossi, T., Nagelkerken, I., Simpson, S.D., Pistevos, J.C.A., Watson, S.A., Merillet, L., Fraser, P., Munday, P.L., Connell, S.D., 2015. Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proceedings of the Royal Society. B 282, 20151954.
Rossi, T., Pistevos, J.C.A., Connell, S.D., Nagelkerken, I., 2018. On the wrong track: ocean acidification attracts larval fish to irrelevant environmental cues. Scientific Reports 8, 5840.
Ruby, P., Ahilan, B., 2018. An overview of climate change impact in fisheries and aquaculture. Climate Change 4, 87-94.
Sabine, C.L, Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S.L., Wallace, D.W.R., Tilbrook, B., 2004. The oceanic sink for anthropogenic CO2. Science 305, 367-371.
Sahu, B.C., Adhikari, S., Mahapatra, A.S., Dey, L., 2013. Carbon, nitrogen, and phosphorus budget in scampi (Macrobrachium rosenbergii) culture ponds. Environmental Monitoring and Assessment 185, 10157-10166.
Saksena, D. N., Gaidhane, D. M., Singh, H., 2006. Limnology of Kharland (saline) ponds of Ratnagiri, Maharashtra in relation to prawn culture potential. Magnesium 27, 49-53.
Sampaio, E., Lopes, A.R., Francisco, S., Paula, J.R., Pimentel, M., Maulvault, A.L., Repolho, T., Grilo, T.F., Pousão-Ferreira, P., Marques, A., Rosa, R., 2018. Ocean acidification dampens warming and contamination effects on the physiological stress response of a commercially important fish. Science of the Total Environment 618, 388-398.
Sánchez-Amaya, M.I., Ortiz-Delgado, J.B., García-López, Á., Cárdenas, S., Sarasquete, C. 2007. Larval ontogeny of redbanded seabream Pagrus auriga (Valenciennes, 1843) with special reference to the digestive system. A histological and histochemical approach. Aquaculture 263, 259-279.
Sandblom, E., Clark, T.D., Gräns, A., Ekström, A., Brijs, J., Sundström, L. F., Odelstrom, A., Adill, A., Aho, T., Jutfelt, F., 2016. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nature Communications 7, 11447.
Schmidt, M., Windisch, H.S., Ludwichowski, K.U., Seegert, S.L.L., Pörtner, H.O., Storch, D., Bock, C., 2017. Differences in neurochemical profiles of two gadid species under ocean warming and acidification. Frontiers in Zoology 14, 49.
Schneider, K., Erez, J., 2006. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnology and Oceanography 51, 1284-1293.
Shao, Y.T., Chang, F.Y., Fu W.C., Yan H.Y., 2016. Acidified seawater suppresses insulin‐like growth factor I m RNA expression and reduces growth rate of juvenile orange‐spotted groupers, Epinephelus coioides (Hamilton, 1822). Aquaculture Research 47, 721-731.
Shaw, E.C., Munday, P.L., McNeil, B.I., 2013. The role of CO2 variability and exposure time for biological impacts of ocean acidification. Geophysical Research Letters 40, 4685-4688.
Shi, Z., Huang, X., Fu, R., Wang, H., Luo, H., Chen, B., Liu, M., Zhang, D., 2008. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture 275, 306-310.
Simpson, S.D., Munday, P.L., Wittenrich, M.L., Manassa, R., Dixson, D.L., Gagliano, M., Yan, H.Y., 2011. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biology Letters 7, 917-920.
Snedecor, G.W., Cochran, W.G., 1967. Statistical methods. Iowa State University Press, Iowa, USA.
Snyder, J.T, Murray, C.S., Baumann, H., 2018. Potential for maternal effects on offspring CO 2 sensitivities in the Atlantic silverside (Menidia menidia). Journal of Experimental Marine Biology and Ecology 499, 1-8.
Song, J., Parenti, L.R., 1995. Clearing and staining whole fish specimens for simultaneous demonstration of bone, cartilage, and nerves. Copeia 1995, 114-118.
Spicer, J.I., Raffo, A., Widdicombe, S., 2007. Influence of CO2-related seawater acidification on extracellular acid–base balance in the velvet swimming crab Necora puber. Marine Biology 151, 1117-1125.
Sswat, M., Stiasny, M.H., Jutfelt, F., Riebesell, U., Clemmesen, C., 2018. Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2. PLoS ONE 13, e0191947.
Stiasny, M.H., Mittermayer, F.H., Sswat, M., Voss, R., Jutfelt, F., Chierici, M., Puvanendran, V., Mortensen, A., Reusch, T.B.H., Clemmesen, C., 2016. Ocean acidification effects on Atlantic cod larval survival and recruitment to the fished population. PLoS ONE 11, e0155448.
Strickland, J.D., Parsons, T.R., 1972. A practical handbook of seawater analysis, bulletin 167. 2nd Edition, Fisheries Research Board of Canada Bulletin No. 167, Fisheries Research Board of Canada, 310.
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D.S., Arbic, B. K., Key, R. M., 2018. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proceedings of the National Academy of Sciences 115, 11700-11705.
Thavarajah, R., Mudimbaimannar, V.K., Elizabeth, J., Rao, U.K., Ranganathan, K., 2012. Chemical and physical basics of routine formaldehyde fixation. Journal of Oral and Maxillofacial Pathology: JOMFP 16, 400-405.
Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., 2011. The representative concentration pathways: an overview. Climatic Change 109, 5-31.
Villalobos, C., 2018. Interactive effects of ocean acidification and ocean warming on Pacific herring (Clupea pallasi) early life stages. Western Washington University Graduate School Collection Master Thesis.
Vornanen, M., 2016. The temperature dependence of electrical excitability in fish hearts. Journal of Experimental Biology 219, 1941-1952.
Watson, S.A., Allan, B.J.M., McQueen, D.E., Nicol, S., Parsons, D.M., Pether, S.M.J., Pope, S., Setiawan, A.N., Smith, N., Wilson, C., 2018. Ocean warming has a greater effect than acidification on the early life history development and swimming performance of a large circumglobal pelagic fish. Global Change Biology 24, 4368-4385.
Widdicombe, S., Spicer, J.I., 2008. Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? Journal of Experimental Marine Biology and Ecology 366, 187-197.
Wilson, R.W., Millero, F.J., Taylor, J.R., Walsh, P.J., Christensen, V., Jennings, S., Grosell, M., 2009. Contribution of fish to the marine inorganic carbon cycle. Science 323, 359-362.
Žalohar, J., Hitij, T., 2012. The first known fossil record of pygmy pipehorses (Teleostei: Syngnathidae: Hippocampinae) from the Miocene coprolitic horizon, Tunjice Hills, Slovenia. Annales de Paléontologie 98, 131-151.
Zeebe, R.E, Zachos, J.C., Caldeira, Ken., Tyrrell, T., 2008. Carbon emissions and acidification. Science 321, 51-52.
Zeuthen, E., 1953. Oxygen uptake as related to body size in organisms. The Quarterly Review of Biology 28, 1-12.
(此全文20240806後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 銀鱗鯧的胚胎、仔稚魚發育及對氨氮急毒性耐受性之研究
2. 銀鱗鯧稚魚對亞硝酸鹽急毒性耐受性之研究
3. 藍帶荷包魚(Chaetodontoplus septentrionalis)的仔稚魚發育、微細構造及首次攝餌之研究
4. 養殖密度、換水率及添加光合菌(Rhodobium sp.)和藻水對於羅氏沼蝦(Macrobrachium rosenbergii)的成長、活存及水質因子之影響
5. 裂唇魚(Labroides dimidiatus)的自然產卵和初期生活史之研究
6. 擬刺尾鯛(Paracanthurus hepatus)的自然產卵和初期生活史之研究
7. 延遲首次攝食對尖翅燕魚[Platax teira (Forsskål, 1775)]的仔魚成長及活存之影響
8. 虎斑烏賊 (Sepia pharaonis Ehrenberg, 1831) 的初期生活史及其亞幼生對氨氮急毒性耐受性之研究
9. 人工環境中疊波蓋刺魚(Pomacanthus semicirculatus)的自然產卵和初期生活史之研究
10. 淡水馴養的銀鱗鯧稚魚暴露於亞硝酸中之急毒性及亞致死濃度對其形質、離子調節、逆境與能量代謝反應之影響
11. 帶紋斑節海龍 (Dunckerocampus dactyliophorus )的人工繁殖及初期生活史之研究
12. 人工環境中二種不同產卵模式的珊瑚礁魚類自然產卵、初期發育及仔稚魚培育—以飾妝銜鰕虎及鷹金䱵為例
13. 無機氮、磷施肥法對養殖疊波蓋刺魚、擬刺尾鯛及鷹金䱵仔魚初期活存影響之研究
14. 眼斑雙鋸魚稚魚暴露於氨中之急毒性及長期非致死濃度對其生理調控之影響
15. 黑唇絲鰕虎(Cryptocentrus cinctus)的初期生活史及種苗培育研究
 
* *