帳號:guest(3.142.166.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Khaerul Awaluddin
作者(英文):Khaerul Awaluddin
論文名稱:以中觀生態池進行海洋酸化及暖化對熱帶鈣化藻類影響的研究
論文名稱(英文):Effects of Ocean Acidification and Warming on the Tropical Calcifying Macroalgae: a Mesocosm Approach
指導教授:劉弼仁
指導教授(英文):Pi-Jen Liu
口試委員:張桂祥
劉少倫
口試委員(英文):Kwee Siong Tew
Shao-Lun Liu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610563018
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:55
關鍵詞:鈣化藻類中觀生態池海洋酸化暖化海草
關鍵詞(英文):calcifying macroalgaemesocosmocean acidificationocean warmingseagrass
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏收藏:0
海洋酸化及暖化的海洋生態環境影響海洋生物生存的一個潛在威脅。愈加嚴重的海洋酸化(OA)及暖化的其中一個關鍵的相關影響是減少海洋鈣化藻類的碳酸鈣。鈣化藻類對因全球暖化造成的海洋溫度及二氧化碳(CO2)增加是敏感的,這是因為溫度及CO2的增加對鈣化的過程有負面影響。然而,海草群是最有生產力及最有活力的生態系統之一。海草能夠從大氣中捕獲及儲存大量的碳並在確保低質穩定中起作 用。因此,此項研究的目的是為了探討海草能否幫助鈣化藻類抵抗酸化及暖化帶來的影響。 此研究在2017年3月27日開始進行,將三種鈣化藻類 (Mastophora rosea, Halimeda opuntia, Mesophyllum sp) 培養在珊瑚礁的中觀生態池,進行 超過12個星 期的長期觀察及實驗。研究設計為兩種變因:有海草及無海草(覆蓋度約30%,密度為63.3ind/m2),各三重複生態池。在經過兩個星期的適應後,實驗分為三個階段進行:第一個階段進行四週的 CO2 添加,第二階段持續維持四週的 CO2 添加並提 高水溫至 28oC 的環境,第三個階段持續維持兩週的 CO2 添加並提高溫度至 31oC 的環境。海洋酸化與海水暖化兩種環境均會影響 M. rosea 的鈣化及其死亡率; 相似地, 暖化環境對 H. opuntia 亦會降低其鈣化速率並提高其死亡率, 但是酸化 環境對此種藻類則沒有造成影響;Mesophyllum sp.的鈣化與死亡率在酸化與暖化的 環境下都沒有受到影響。另外,三種藻類的光合作用效率在酸化與暖化的環境中都沒有任何改變。實際上,海草的有無,對本實驗所有的鈣化藻類在鈣化率、死亡率及光合作用效率皆無顯著差異。也就是說,30%海草並沒有減輕海水酸化與暖化對這些鈣化藻類的影響。M. rosea 與 H. opuntia 兩種藻類對環境壓力如海洋酸化與 暖化均較為敏感,可能是由於其原生棲地較為穩定。相對來說,Mesophyllum sp. 則對環境變化有較大的容忍度,並可能 在未來環境變遷下有較高的存活機會。
Ocean acidification (OA) and warming are potential threats to marine ecosystems through their influence on marine organisms. One of the most critical effects of increasing OA and warming relates to the reduction of calcium carbonate to marine calcifying macroalgae. Calcifying macroalgae are sensitive to the increases in seawater temperature and CO2 predicted with global climate change due to the negative effects of these changes on the process of calcification. However, seagrass communities are one of the most productive and dynamic ecosystems. Seagrasses are capable of capturing and storing a large amount of carbon from the atmosphere and act as substrate stabilizers. Thus, the aim of this study is to explore whether seagrasses can help calcifying macroalgae to resist the OA and warming condition. The experiment was started on March of 2017 at a coral reef mesocosm using three species of calcifying macroalgae (Mastophora rosea, Halimeda opuntia, and Mesophyllum sp) and carried out for more than 12 weeks. The experimental design had two treatments with three replicates: presence of seagrass and absence of seagrass (about 30% cover and density of 63.03 ind/m2). After acclimatization for two weeks, the experiment was carried out in three stages: the first stage was enriched CO2 for 4 weeks, and the second stage was enriched CO2 and elevated temperature at 28oC for 4 weeks and the third stage was enriched CO2 and elevated temperature at 31oC for 2 weeks. The results of ocean acidification and warming indicate a negative effect on calcification and mortality of M. rosea. Similarly, calcification and mortality of H. opuntia showed negative effect but only under warming condition. However, calcification and mortality of Mesophyllum sp showed no effect under ocean acidification and warming condition. In addition, quantum yield of photosynthesis showed no effect under ocean acidification and warming condition in all species. In fact, calcification, mortality and quantum yield of photosynthesis showed no significant different between treatment with seagrass and without seagrass in all species of calcifying macroalgae. Thus, seagrass did not appear to alleviate the detrimental effects of OA and high temperatures on these calcifying algae species. The response of M. rosea and H. opuntia are more sensitive to environmental stressors, such as OA and warming may influenced by their ecological habitat in subtidal areas. However, Mesophyllum sp is more tolerances for fluctuating temperature and pCO2 and may survive for future global change.
TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS I
ABSTRACT IN CHINESE II
ABSTRACT IN ENGLISH III
TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
LIST OF APPENDICES VIII

1. CHAPTER 1: INTRODUCTION 1
1.1 Background 1
1.2 Aims 3

2. CHAPTER 2: LITERATURE REVIEW 4
2.1 The effects of global climate change on marine macroalgae 4
2.2 The role of calcifying macroalgae 6
2.3 Importance of seagrass ecosystems 7
3. CHAPTER 3: MATERIALS AND METHODS 9
3.1 Location and experimental design 9
3.2 Experimental manipulation 11
3.3 Seawater 12
3.4 Biological response variables 13
3.4.1 Calcification and growth 13
3.4.2 Mortality 14
3.4.3 Photosynthetic performance 14
3.5 Statistical analyses 15
4. CHAPTER 4: RESULTS 16
4.1 Environmental parameters of treatments 16
4.1.1 Seawater parameters under ocean acidification 16
4.1.2 Seawater parameters under warming condition 17
4.2 Response of calcified macroalgae to increased pCO2 and warming 20
4.2.1 Calcification rates 20
4.2.1.1 Calcification rates under ocean acidification 20
4.2.1.2 Calcification rates under warming condition 21
4.2.2 Mortality rates 23
4.2.2.1 Mortality rates under ocean acidification 23
4.2.2.2 Mortality rates under warming condition 24
4.2.3 Optimum quantum yield of photosynthesis 26
4.2.3.1 Photosynthesis rates under ocean acidification 26
4.2.3.2 Photosynthesis rates under warming condition 27
5. CHAPTER 5: DISCUSSION 30
5.1 Effects of warming and CO2 enrichment on calcification 30
5.2 Effects of warming and CO2 enrichment on mortality 32
5.3 Effects of warming and CO2 enrichment on photosynthesis 33
6. CHAPTER 6: CONCLUSION 35
REFERENCES 36
APPENDICES 44
Adey WH (1998). Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. Journal of Phycology 34:393-406.
Andersson AJ, MacKenzie FT, Lerman A (2005). Coastal ocean carbonate ecosystems in the high CO2 world of the Anthropocene. American Journal of Sciences 305: 875-918.
Anthony KRN, Kleypas JA, Gattuso JP (2011). Coral reefs modify their seawater carbon chemistry-implications for impacts of ocean acidification. Global Change Biology 17:3655-3666.
Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences 105: 17442-17446.
Bandeira-Pedrosa ME, Pereira SMB, Bouzon ZL, Oliveira EC (2004). Halimeda cuneata (Bryopsidales, Chlorophyta), a new record for the Atlantic Ocean. Phycologia 43: 50–57.
Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169-193.
Beer S (1989). Photosynthesis and photorespiration of marine angiosperms. Aquatic Botany 34: 153-166.
Björkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489-504.
Björk M, Short F, Mcleod E, Beer S (2008). Managing seagrasses for resilience to climate change. IUCN. Gland Switzerland 56 pp.
Borowitzka MA (1981). Photosynthesis and calcification in the articulated coralline algae Amphiroa foliacea and A. anceps. Marine Biology 63: 17-23.
Borowitzka MA, Larkum AWD (1976). Calcification in the green alga Halimeda III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. Journal of Experimental Botany 27:879-893.
Caldeira K, Wickett ME (2003). Anthropogenic carbon and ocean pH. Nature 425: 365.
Caldeira K, Wickett ME (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research 110: C09S04.
Campbell SJ, McKenzie LJ, Kerville SP (2006). Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. Journal of Experimental Marine Biology and Ecology 330: 455-468.
Cao L, Caldeira K (2008). Atmospheric CO2 stabilization and ocean acidification. Geophysical Research Letters 35: L19609.
Chisholm JRM (2000). Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnology and Oceanography 45:1476-1484.
Collier CJ, Uthicke S, Waycott M (2011). Thermal tolerance of two seagrass species at contrasting light levels: Implications for future distribution in the Great Barrier Reef. Limnology and Oceanography 56: 2200-2210.
Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013). The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnology and Oceanography 58: 388-398.
Cornwall CE, Hepburn CD, McGraw CM, Currie KI, Pilditch CA, Hunter KA, Boyd PW, Hurd CL (2013). Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B 280: 20132201.
Costanza R, de Groot R, Sutton P, Van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, and Turner RK (2014). Changes in the global value of ecosystem services. Global Environmental Change 26:152-158.
De Lafontaine Y, Leggett WC (1987). Effect of container size on estimates of mortality and predation rates in experiments with macrozooplankton and larval fish. Canadian Journal of Fisheriesand Aquatic Sciences 44, 1534–1543.
Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012). Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology 48: 32-39.
Diaz-Pulido G, McCook LJ, Larkum AWD, Lotze HK, Raven JA, Schaffelke B, Smith JE, Steneck RS (2007). Vulnerability of macroalgae of the Great Barrier Reef to climate change. In Climate Change and the Great Barrier Reef . J.E. Johnson & P.A. Marshall, Editors: 154-192. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, Australia.
Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1:169-192.
Dring MJ, Wagner A, Boeskov J, Lüning K (1996). Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by Chlorophyll fluorescence measurements: Influence of collection depth and season, and length of irradiation. European Journal of Phycology 31: 293-302.
Duarte CM (2002). The future of seagrass meadows. Environmental Conservation 29: 192-206.
Duarte CM, Cebrián J (1996). The fate of marine autotrophic production. Limnology and Oceanography 41: 1758-1766.
Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1: 165-169.
Fabry VJ, Seibel BA, Feely RA, Orr JC (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Sciences 65:414–432
Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362-366.
Ferguson RL, Wood LL, Graham DB (1993). Monitoring spatial change in seagrass habitat with aerial photography. Photogrammetric Engineering and Remote Sensing 59:1033-1038.
Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505-509.
Frankignoulle M, Canon C, Gattuso JP, (1994). Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnology and Oceanography 39: 458-462.
Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993). Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Marine Biology 117:129-32.
Gao K, Zheng Y (2010). Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biology 16:2388-2398.
Gattuso JP, Buddemeier RW (2000). Ocean biogeochemistry: calcification and CO2. Nature 407: 311-313.
Guinotte JM, Fabry VJ (2008). Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences 1134: 320–342
Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012). Effects of climate change on global seaweed communities. Journal of Phycology 48: 1064-1078.
Harrington L, Fabricius K, Eaglesham GK, Negri A (2005). Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae. Marine Pollution Bulletin 51: 415-427.
Heck KL, Hays G, Orth RJ (2003). A critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253:123-136.
Hendriks IE, Duarte CM, Alvarez M (2010). Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuarine Coastal and Shelf Science 86: 157-164.
Hendriks IE, Olsen YS, Ramajo L, Basso L, Steckbauer A, Moore TS, Howard J, Duarte CM (2014). Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11: 333-346.
Heyward AJ, Negri AP (1999). Natural inducers of coral larval metamorphosis. Coral Reefs 18: 273-279.
Hofmann LC, Bischof K (2014). Ocean acidification effects on calcifying macroalgae. Aquatic Biology 22:261-279.
Hofmann LC, Straub S, Bischof K (2012a). Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Marine Ecology Progress Series 464: 89-105.
Hofmann LC, Yildiz G, Hanelt D, Bischof K (2012b). Physiological responses of the calcifying Rhodophyte, Corallina officinalis (L.), to future CO2 levels. Marine Biology 159: 783-792.
Howard JL, Perez A, Lopes CC, Fourqurean JW (2016). Fertilization changes seagrass community structure but not blue carbon storage: results from a 30-Year Field Experiment. Estuaries and Coasts: 1-13.
Howe SA, Marshall AT (2002). Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). Journal of Experimental Marine Biology and Ecology 275: 63-81.
Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009). Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. Journal of Phycology 45: 1236-1251.
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley editors]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Irving AD, Connell SD, Russell BD (2011). Restoring coastal plants to improve global carbon storage: reaping what we sow. PLoS One 6:e18311.
Jackson EL, Rowden AA, Attrill MJ, Bossey SJ, Jones MB (2001). The importance of seagrass beds as a habitat for fishery species. Oceanography and Marine Biology 39: 269-304.
Johnson VR, Russell BD, Fabricius KE, Brownlee C, Hall-Spencer JM (2012). Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Global Change Biology 18: 2792-2803.
Jokiel PL, Coles SL (1990). Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8: 155-162.
Jokiel PL, Maragos JE, Franzisket L (1978). Coral growth: buoyant weight technique. Monographs on Oceanography Methodology 5: 13.
Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008). Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473-483.
Jones CG, Lawton JH, Shachak M (1996). Organisms as ecosystem engineers. In Samson FB, Knopf FL, editors Ecosystem Management. Springer, New York, pp 130-147.
Jones RJ, Kildea T, Hoegh-Guldberg O (1999). PAM chlorophyll fluorometry: A new in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide from cyanide fishing. Marine Pollutions Bulletin 38: 864-874.
Kalnay E, Cai M (2003). Impact of urbanization and land-use change on climate. Nature 423: 528-531.
Keats DW, Maneveldt GW, Baba M, Chamberlain YM, Lewis JE (2009). Three species of Mastophora (Rhodophyta:Corallinales, Corallinaceae) in the tropical Indo-Pacific Ocean: M. rosea (C.Agardh) Setchell, M. pacifica (Heydrich) Foslie, and M. multistrata, sp. Phycologia 48: 404-422.
Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ (2010). Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochemical Cycles 24 GB4026.
Kleypas JA, Yates KK (2009). Coral reefs and ocean acidification. Oceanography 22: 108-117.
Kroeker KJ, Kordas RL, Crim RN, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884-1896.
Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13: 1419-1434.
Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008). Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience 1:114-117.
Langdon C, Gattuso JP, Andersson A (2010). Chapter 13: Measurements of calcification and dissolution of benthic organisms and communities. Publication Office of the European Union, p 213-232.
Larkum AWD, Orth R, Duarte CM (eds) (2006). Seagrasses: biology, ecology and conservation. Springer, The Netherlands, pp 323–345
Littler MM, Littler DS (1984). Models of tropical reef biogenesis: the contribution of algae. Progress in Phycological Research 3: 323-364.
Littler MM, Littler DS, Titlyanov EA (1991). Comparisons of N- and P- limited productivity between high granitic islands versus low carbonate atolls in the Seychelles Archipelago: A test of the relative-dominance paradigm. Coral Reefs 10: 199-209.
Liu PJ, Lin SM, Fan TY, Meng PJ, Shao KT, Lin HJ (2009). Rates of overgrowth by macroalgae and attack by sea anemones are greater for live coral than dead coral under conditions of nutrient enrichment. Limnology Oceanography 54: 1167-1175.
Manzello DP, Enochs IC, Melo N, Gledhill DK, Johns EM (2012). Ocean acidification refugia of the Florida Reef Tract. PLoS ONE 7: e41715.
Martin S, Gattuso JP (2009). Response of Mediterranean coralline algae to ocean ocidification and elevated temperature. Global Change Biology 15:2089-2100.
Martin S, Cohu S, Vignot C, Zimmerman G, Gattuso JP (2013). One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecology and Evolution 3: 676-693.
Mateo MA, Cebrián J, Dunton K, Mutchler T (2006). Carbon flux in seagrass ecosystems. In: Larkum A, Orth R, Duarte C, editors. Seagrasses: Biology, Ecology and Conservation. Netherlands: Springer-Verlag 159-192.
McCoy SJ, Kamenos NA (2015). Coralline algae (Rhodophyta) in a changing world: Integrating ecological, physiological, and geochemical responses to global change. Journal of Phycology 51: 6-24.
Meehl, GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ and Zhao ZC, 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, editors]. Cambridge University Press, Cambridge, UK, pp. 747-845.
Morse JW, Andersson AJ, Mackenzie FT (2006). Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ‘‘ocean acidification’’: role of high Mg-calcites. Geochimica et Cosmochimica Acta 70:5814-5830.
Necchi O, JR 2004. Photosynthetic responses to temperature in tropical lotic macroalgae. Phycological Research 52: 140-148.
Nelson WA (2009). Calcified macroalgae–critical to coastal ecosystems and vulnerable to change: a review. Marine and Freshwater Research 60: 787-801.
Odum EP (1984). The mesocosm. Bioscience 34: 558-562.
Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681-686.
Pai SC, Yang CC, Riley JP (1990). Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Analytica Chimica Acta 232: 345-349.
Pai SC, Riley JP (1994). Determination of nitrate in the presence of nitrite in natural waters by flow injection analysis with a non-quantitative on-line cadmium reductor. International Journal of Environmental Analytical Chemistry 57:263-277.
Payri CE (1997). Hydrolithon reinboldii rhodolith distribution, growth and carbon production of a French Polynesian reef. Proceedings 8th International Coral Reef Symposium 1:755-60.
Peña V, De Clerck O, Afonso-Carillo J, Ballesteros E, Bárbara I, Barreiro R, Le Gall L (2015). An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. European Journal of Phycology 50: 20-36.
Phillips RC, McRoy CP (1980). Handbook of seagrass biology. Garland STPM press, New York, 353 pp.
Price NN, Hamilton SL, Tootell JS, Smith JE (2011). Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Marine Ecology Progress Series 440: 67-78.
Rasheed M, Unsworth R (2011). Long-term climate-associated dynamics of a tropical seagrass meadow: implications for the future. Marine Ecology Progress Series 422: 93-103.
Reynaud S, LeClercq N, Romain-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso JP (2003). Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology 9: 1660-1668.
Ries JB, Cohen AL, McCorkle DC (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131-1134.
Roberts JM, Wheeler AJ, Freiwald A (2006). Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547
Sala OE, Jackson RB, Mooney HA, Howarth RW (2000). Methods in Ecosystem Science. New York: Springer-Verlag p 353.
Scherner F, Ventura R, Barufi JB, Horta PA (2013). Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: providing baselines for potential shifts on seaweed assemblages. Marine Environmental Research 91: 14-25.
Schwarz AM, Björk M, Buluda T, Mtolera H, Beer S (2000). Photosynthetic utilisation of carbon and light by two tropical seagrass species as measured in situ. Marine Biology 137: 755-761.
Semesi IS, Kangwe J, Björk M (2009a). Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuarine, Coastal and Shelf Science 84: 337-341.
Semesi IS, Beer S, Björk M (2009b). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series 382:41-47.
Short FT, Neckles HA (1999). The effects of global climate change on seagrasses. Aquatic Botany 63: 169-196.
Short F, Carruthers T, Dennison W, Waycott M (2007). Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology 350: 3-20.
Short J, Kendrick GA, Falter J, McCulloch MT (2014). Interactions between filamentous turf algae and coralline algae are modified under ocean acidification Journal of Experimental Marine Biology and Ecology 456: 70-77.
Sinutok S, Hill R, Doblin MA, Kühl M, Ralph PJ (2012). Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31: 1201-1213.
Smith AD, Roth AA (1979). Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana. Marine Biology 52: 217-225.
Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation 29:436–459
Steneck RS, Martone P (2007). Calcified algae. Encyclopedia of Tidepools and Rocky Shores. California: University of California Press.
Strickland JD, Parsons TR (1972). A practical handbook of seawater analysis Fisheries Research Board of Canada, Bulletin 167.
Unsworth RKF, Cullen LC (2010). Recognising the necessity for Indo-Pacific seagrass conservation. Conservation Letters 3: 63-73
Unsworth RKF, De Leon PS, Garrard SL, Jompa J, Smith DJ, Bell JJ (2008). High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Marine Ecology Progress Series 353: 213–224.
Van der Heide T, van Nes EH, Geerling GW, Smolders AJ, Bouma TJ, van Katwijk MM (2007). Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10: 1311-1322.
Wefer G (1980). Carbonate production by algae Halimeda, Penicillus, and Padina. Nature 285: 323-324.
Zerebecki RA, Sorte CJB (2011). Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS ONE 6: e14806.
Zimmerman RC, et al (1997). Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiology 115 599-607.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *