帳號:guest(3.144.97.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳業皓
作者(英文):YEH-HAW GOH
論文名稱:柳珊瑚(Junceella fragillis 和 J. juncea)卵母細胞可程式冷凍保存
論文名稱(英文):Effect of cryopreservation of the gorgonian coral (Junceella fragillis and J. juncea) using programmable freezing
指導教授:林家興
指導教授(英文):Chiah-Sin Lin
口試委員:蔡淑君
韓僑權
林家興
口試委員(英文):Su-June Tsai
Chiao-Chuan Han
Chiah-Sin Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610563019
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:64
關鍵詞:低溫冷凍保存珊瑚可程式抗凍劑
關鍵詞(英文):CryopreservationOocytesProgrammable coolerLipidSugar
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
珊瑚礁擁有生物多樣性,對人類極其爲重要。然而這些脆弱的珊瑚礁生態正受到巨烈的自然及人爲壓力威脅,許多珊瑚物種正面臨瀕臨絕種的問題。冷凍保存是一種長期保存技術,利用降低溫度来保持细胞、胚胎及組織使其處於生理静止狀態中減少能量的耗損。本研究利用兩種鞭珊瑚(Junceella fragillis and J. juncea)發展可程式冷凍保存技術對其卵母细胞進行低溫冷凍保存之相關測試,例如:平衡時間、抗凍劑及其輔助劑濃度與種類、降溫速率、共晶溫度、解凍時間等。結果顯示,10 ⁰C 的降溫速率及- 50 ⁰C的共晶溫度雖然有最佳之J.fragillis卵母細胞活性但其活性卻小於16 %,而5 ⁰C 的降溫速率及- 40 ⁰C共晶溫度卻對J.juncea有著明顯的冷凍保存效益(≥ 80 %)。當降溫速率超過該物種的臨界點時,會對該物種造成冷凍傷害,因此,有效的的降溫速率及共晶溫度能提升冷凍保存的效果。在配合加入糖類抗凍輔助劑後,0.2 M蔗糖和1 M甲醇的混合型抗凍劑對於J. juncea的卵母細胞的存活率及卵母細胞完整百分比有最佳的效果。在本次實驗也發現0.5 M的甲醇以脂質球帶入油酸或芥酸可有效的提升卵母細胞的存活率以及提升其完整百分比。最後,本實驗發現J.juncea的卵母細胞無論在低溫冷凍保存還是抗凍劑的耐受性都遠比J.fragillis卵母細胞來得高。這是因爲兩種珊瑚共存生活環境不同所造成,這也和其脂質的含量有關。本實驗爲第一篇探討利用可程式冷凍保存珊瑚卵母細胞之相關研究。本實驗結果可爲未來的珊瑚保育及復育提供實際上的幫助。
Coral reefs demonstrate considerable biological diversity and are critical to humans. However, these fragile ecosystems are currently threatened by the onslaught of anthropogenic stressors; this may result in the extinction of numerous coral species in the near future. Cryopreservation is a long-term storage technique that uses low temperatures to keep cells and tissues alive in a quiescent state. In this study, the gorgonian corals Junceella fragillis and J. juncea were target species; their oocytes were cryopreserved using a controlled, slow-cooling protocol. Results revealed that the effective cooling rate and eutectic temperature were respectively 10 °C/min and −50 °C for J. fragillis oocytes and 5 °C/min and −40 °C for J. juncea oocytes. Regarding sugar supplementation, for J. fragillis oocytes, 1 M methanol with 0.4 M sucrose resulted in higher viability and 1 M methanol with 0.2 M sucrose led to better morphology. For J. juncea, 1 M methanol with 0.2 M sucrose led to both higher viability and better morphology. Moreover, 0.5 M methanol supplemented with two lipids (oleic acid and erucic acid) improved both oocyte viability and reduced the average percentage of damaged oocytes. This study is the first to effectively cryopreserve coral oocytes by using a controlled, slow-cooling method; in the future, the fertilisation of thawed and viable oocytes (which were cryopreserved using the current approach) will be studied.
CHAPTER 1 LITERATURE REVIEW
1.0 Introduction 1
2.0 Cryopreservation 1
2.1 Cold shock 2
2.2 Ice crystal formation 2
2.3 Solution effect 2
3.0 Freezing technique 2
3.1 Slow freezing 3
3.2 Two-step freezing 3
3.3 Vitrification 3
4.0 Cryopreservation protocol 4
4.1 Cooling rate 4
4.2 CPA 4
4.3 Equilibration time 5
4.4 Thawing method 6
4.5 Viability assay 6
5.0 Current status 12
5.1 Sperm 13
5.2 Oocytes 15
5.3 Embryos, larvae, fragment and tissue ball 17
5.4 Symbiodinium 19

CHAPTER 2 MATERIAL AND METHODS
2.1 Coral collection 21
2.2 Oocyte isolation 24
2.3 Preparation of MeOH 24
2.4 Preparation of sugar 24
2.5 Preparation of lipid 24
2.6 Freezing 26
2.7 Viability assay 29
2.8 Statistical analysis 29

CHAPTER 3 RESULTS
3.1 Introduction 31
3.1.1 Results
3.1.1.1 Effect of cooling and eutectic temperature 35
3.1.1.2 Effect of using cryoprotectant and supplement (sugar) 37
3.1.1.3 Effect of cryoprotectant with lipids on oocytes 39
3.1.1.4 Effect of cryoprotectant and lipids with cold hardening on oocytes 41

CHAPTER 4 DISCUSSION 43
CHAPTER 5 CONCLUSION 49
REFERENCES 50

Aardema H., Vos P. L., Lolicato F., Roelen B. A., Knijn H. M., Vaandrager A. B., Helms J. B. and Gadella B. M., 2011. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biology of Reproduction 85, 62-69.
Abrego D., Ulstrup K. E., Willis B. L. and van Oppen M. J. H., 2008. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proceedings of the Royal Society B: Biological Sciences 275(1648), 2273-2282.
Adams S. L., Hessian P. A. and Mladenov P. V., 2006. The potential for cryopreserving larvae of the sea urchin, Evechinus chloroticus. Cryobiology 52, 139-145.
Adams S. L., Kleinhans F. W., Mladenov P. V. and Hessian P. A., 2003. Membrane permeability characteristics and osmotic tolerance limits of sea urchin (Evechinus chloroticus) eggs. Cryobiology 47, 1-13.
Aisen E., Quintana M., Medina V., Morello H. and Venturino A., 2005. Ultramicroscopic and biochemical changes in ram spermatozoa cryopreserved with trehalose based hypertonic extenders. Cryobiology 50, 239-249.
Amann R. P. and Pickett B. W., 1987. Principles of cryopreservation and a review of cryopreservation of stallion spermatozoa. Journal of Equine Veterinary Science 7, 145-173.
Amorim E. A. M., Graham J. K., Spirizzi B., Meyers M. and Torres C. A. A., 2009. Effect of cholesterol or cholesteryl conjugates on the cryosurvival of bull sperm. Cryobiology 58, 210-214.
Anchordoguy T., Crowe J. H., Griffin F. J. and Clark Jr. W. H., 1988. Cryopreservation of sperm from the marine shrimp Sicyonia ingentis. Cryobiology 25(3), 238-243.
Aramli M. S. and Nazari R. M., 2014. Motility and fertility of cryopreserved sperm in Persian sturgeon, Acipenser persicus, stored for 30-60 min after thawing. Cryobiology 69, 500-502.
Aramli M. S., Golshahi K., Nazari R. M., Aramli S. and Banan A., 2015. Effectiveness of glucose-methanol extender for cryopreservation of Huso spermatozoa. Animal Reproduction Science 162, 37-42.
Arav A. and Zvi R., 2008. Do chilling injury and heat stress share the same mechanism of injury in oocytes? Molecular and Cellular Endocrinology 282, 150-152.
Arav A., Pearl M. and Zeron Y., 2000. Does lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? CryoLetters 21, 179-186.
Arav A., Zeron Y., Leslie S. B., Behboodi E., Anderson G. B. and Crowe J. H., 1996. Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33, 589-599.
Ashwood-Smith M. J., 1980. Low temperature preservation of cells, tissues and organs. In: Low Temperature Preservation in Medicine and Biology (Ashwood-Smith M. J. and Farrant J., eds.), Pitman Medical Ltd., Tunbridge Wells, Kent. England 19-44.
Bailey J. L., Lessard C., Jacques J., Breque C., Dobrinski I., Zeng W. and Galantino-Hommer H. L., 2008. Cryopreservation of boar semen and its future importance to the industry. Theriogenology 70(8), 1251-1259.
Baker A. C., 2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics 34, 661-689.
Baker A. C., Glynn P. W. and Riegl B., 2008. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine Coastal Shelf Science 80, 435-471.
Ballou J. D., 1992. Potential contribution of cryopreserved germplasm to the preservation of genetic diversity and conservation of endangered species in captivity. Cryobiology 29, 19-25.
Bank H. L. and Brockbank K. G., 1987. Basic principle of cryobiology. Journal of Cardiac Surgery 2(1), 137-143.
Bank H., 1973. Visualization of freeze damage. II . Structural alterations during warming. Cryobiology 10, 157-170.
Barrera-Compean M. H., Purdy P. H., Dzakuma J. M., Newton G. R. and Nuti L. C., 2005. Cholesterol-loaded-cyclodextrin improves post-thaw goat sperm motility. Journal of Animal Science 85.
Bayer F. M., 1981. Key to the genera of Octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. Proceedings of Biological Society of Washington 94, 901-947.
Benson E. E., 2008. Cryopreservation theory. In: Plant Cryopreservation: A practical guide (Reed B. M. ed), New York, United State of America 15-32.
Best B. P., 2015. Cryoprotectant toxicity: Facts and Issues, and Questions. Rejuvenation Research 18(5), 422-436.
Bhavanishankar S. and Subramoniam T., 1998. Cryopreservation of spermatozoa of the edible mud crab Scylla serrata (Forskal). Journal of Experimental Zoology Banner 277(4), 326-336.
Biggs D., 2011. Understanding resilience in a vulnerable industry: the case of reef tourism in Australia. Ecology and Society 16(2) 1-18.
Bougrier S. and Rabenomanana L. D., 1986. Cryopreservation of spermatozoa of the Japanese oyster, Crassostra gigas. Aquaculture 58, 277-280.
Brady A. K., Hilton J. D. and Vize P. D., 2009. Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response. Coral reefs 28, 677-680.
Buddemeier R. B., Kleypas J. A. and Aronson R. B., 2004. Potential contributions of climate change to stresses on coral reef ecosystems. Coral Reefs and Global Climate Change 1-34.
Bury N. R. and Olive P. J. W., 1993. Ultrastructural observations on membrane associated with cryopreserved spermatozoa of two polychaete species and subsequent mobility induced by quinacine. Journal Invertebrate Reproduction and Development 23 (2-3), 139-150.
Cerrano C., Danovaro R., Gambi C., Pusceddu A., Riva A. and Schiaparelli, 2010. Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodiversity and Conservation 19, 153-167.
Chao N. H., Lin T. T., Chen Y. J., Hsu H. W. and Liao I. C., 1997. Cryopreservation of the late embryos and early larvae in the oyster and hard clam. Aquaculture 155, 31-44.
Chen C. C. and Chang K. H., 1991. Gorgonacea (Coelenterata: Anthozoz: Octocorallia) of Southern Taiwan. Bulletin of the Institute of Zoology, Academia Sinica 30, 149-182.
Chen C. P., Denlinger D. L. and Lee R. E., 1987. Cold shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiology Zoology (60), 297-304.
Chen S., Lien Y., Chen H., Chang L., Tsai Y. and Yang Y., 2005. Observational clinical follow up of oocyte cryopreservation using a slow freezing method with 1, 2-propanediol plus sucrose followed by ICSI. Human Reproduction 20, 1975-1980.
Choi Y. H. and Chang Y. J., 2003. Gametogenic cycle of the transplanted cultured pearl oyster, Pinctada fucata martensii (Bivalvia: Pteriidae) in Korea. Aquaculture 220, 781-790.
Chong G., 2015. Cryopreservation and gene expression of the dinoflagellate endosymbiont of the gorgonian coral Junceella fragillis. National Dong Hwa University, Taiwan, 1-118.
Chong G., Tsai S., Wang L. H., Huang C. Y. and Lin C., 2016. Cryopreservation of the gorgonian endosymbiont Symbiodinium. Scientific Report 6: 18816. doi: 10.1038/srep18816
Ciereszko A., Dietrich G. J., Nynca J., Dobosz S. and Zalewski T., 2014. Cryopreservation of rainbow trout semen using a glucose-methanol extender. Aquaculture 420-421, 275-281.
Coffroth M. A. and Santos S. R., 2005. Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156, 19-34.
Coticchio G., De Santis L., Rossi G., Borini A., Albertini D. and Scaravelli G., 2006. Sucrose concentration influences the rate of human oocytes with normal spindle and chromosome configuration after slow–cooling cryopreservation. Human Reproduction 21, 1771-1776.
Crowe J. H., Carpenter J. F., Crowe L. M. and Anchorgoguy T. J., 1990. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction stabilizing solutes with biomolecules. Cryobiology 27, 219-231.
Darin-Bennett A. and White I. G., 1977. Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold shock. Cryobiology 14, 466-470.
Donner S. D., Rickbeil G. J. M. and Heron S. F., 2017. A new, high-resolution global mass coral bleaching database. PLoS ONE 12 (4): e0175490. doi: https://doi.org/10.1371/journal.pone.0175490
El-Shahat K. H. and Hammam A. M., 2014. Effect of different types of cryoprotectants on developmental capacity of vitrified-thawed immature buffalo oocytes. Animal Reproduction 11(4), 543-548.
Fabricius K. E. and Alderslade P., 2001. Soft corals and sea fans: a comprehensive guide to the tropical shallow-water general of the Central-West Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science 264.
Feuillassier L., Martinez L., Romans P., Engelmann-Sylvestre I., Masanet P., Barthelemy D. and Engelmann F., 2014. Survival of tissue balls from the coral Pocillopora damicornis L. exposed to cryoprotectant solutions. Cryobiology 69, 376-385.
Feuillassier L., Masanet P., Romans P., Barthelemy D. and Engelmann F., 2015. Towards a vitrification-based cryopreservation protocol for the coral Pocillopora damicornis L.: Tolerance of tissue balls to 4.5 M cryoprotectant solutions. Cryobiology 71, 224-235.
Feuillassier L., Romans P., Engelmann-Sylvestre I., Masanet P., Barthelemy D. and Engelmann F., 2014. Tolerance of apexes of coral Pocillopora damicornis L. to cryoprotectant solutions. Cryobiology 68, 96-106.
Fki L., Bouaziz N., Chkir O., Benjemaa-Masmoudi R., Rival A., Swennen R., Drira N. and Panis B., 2012. Cold hardening and sucrose treatment improve cryopreservation of date palm meristems. Biologia Plantarum 57(2), 375-379.
Gao D. Y., Liu J., Liu C., McGann L. E., Watson P. F., Kleinhans F. W., Mazur P., Critser E. S. and Critser J. K., 1995. Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Human Reproduction 10(5), 1109-1122.
Gattuso J. P., Magnan A., Bille R., Cheung W. W. L., Howes E. L., Joos F., Allemand D., Bopp L. and Colley S. R., 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349.
Ghetler Y., Yavin S., Shalgi R. and Arav A., 2005. The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Human Reproduction 12, 3385-3389.
Giraud M. N., Motta C., Boucher D. and Grizard G., 2000. Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Human Reproduction 15, 2160-2164.
Gook D. A., Edgar D. H. and Stern C., 1999. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1, 2-propanediol. Human Reproduction 14(8) 2061-2068.
Grigg R. W., 1972. Orientation and growth form of sea fans. Association for the Sciences of Limnology and Oceanography 17(2), 185-192.
Gwo J. C., 1995. Cryopreservation of oyster (Crassostrea gigas) embryos. Theriogenology 43, 1163-1174.
Gwo J. C., 2000. Cryopreservation of aquatic invertebrate semen: a review. Aquaculture research 31, 259-271.
Gwo J. C., Wu C. Y., Chang W. S. P. and Cheng H. Y., 2003. Evaluation of damage in pacific oyster (Crassostrea gigas) spermatozoa before and after cryopreservation using comet assay. Cryoletters 24(3), 171-180.
Gwo J., Chen C. and Cheng H., 2002. Semen Cryopreservation of Taiwan Small Abalone, Haliotis diversicolor supertexa. Theriogenology 58, 1563-1578.
Hagedorn M. and Carter V. L., 2015. Seasonal preservation success of the marine dinoflagellate coral symbiont, Symbiodinium sp. PLoS ONE 10(9): e0136358. doi:10.1371/journal.pone.0136358
Hagedorn M. and Carter V. L., 2016. Cryobiology– principles, species conservation and benefits for coral reefs. Reproduction, Fertility and Development 28, 1049-1060.
Hagedorn M. and Splinder R., 2014. The reality, use and potential for cryopreservation of coral reefs. Reproductive Sciences in Animal Conservation, Advances in Experimental Medicine and Biology 753.
Hagedorn M., Carter V. L., Henley E. M., van Oppen M. J. H., Hobbs R. and Spindler R., 2017. Producing coral offspring with cryopreserved sperm: a tool for coral reef restoration. Scientific Report 7: 14432. doi:10.1371/journal.pone.0136358
Hagedorn M., Carter V. L., Lager C., Ciani J. F. C., Dygert A. N., Schleiger R. D. and Henly E. M., 2016. Potential bleaching effects on coral reproduction. Reproduction, Fertility and Development 28, 1061-1071.
Hagedorn M., Carter V. L., Leong J. C. and Kleinhans F. W., 2010. Physiology and cryosensitivity of coral endosymbiotic algae, Symbiodinium. Cryobiology 60, 147-158.
Hagedorn M., Carter V. L., Ly S., Andrell R. M., Yancey P. H., Leong J. A. C. and Kleinhans F. W., 2010. Analysis of internal osmolality in developing coral larvae, Fungia scutaria. Physiological and Biochemical Zoology 83(1), 157-166.
Hagedorn M., Carter V. L., Martorana K., Paresa M. K. and Acker J., 2012. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific Coral. PLoS ONE 7(3): e33354. doi:10.1371/journal.pone.0033354
Hagedorn M., Carter V. L., Steyn R. A., Krupp D., Leong J. C., Lang R. P. and Tiersch T. R., 2006. Preliminary studies of sperm cryopreservation in the mushroom coral, Fungia scutaria. Cryobiology 52, 454-458.
Hagedorn M., Farrell A. and Carter V. L., 2013. Cryobiology of coral fragments. Cryobiology 66, 19-23.
Hagedorn M., Pan R., Cox E. F., Hollingsworth L., Krupp. D., Lewis T. D., Leong J. C., Mazur P., Rall W. F., MacFarlane D. R., Fahy G. and Kleinhans F. W., 2006. Coral larvae conservation: physiology and reproduction. Cryobiology 52, 33-47.
Hanquet-Dufour A. C., Kellner K., Heude C., Naimi A., Mathieu M. and Poncet J. M., 2006. Cryopreservation of Crassosstrea gigas vesicular cells: viability and metabolic activity. Cryobiology 53, 28-36.
Harvey B. and Ashwood-Smith M. J., 1982. Cryoprotectant penetration and supercooling in the eggs of salmonid fishes. Cryobiology 19(1), 29-40.
Harvey B., Kelley R. N. and Ashwood-Smith M. J., 1982. Cryopreservation of zebra fish spermatozoa using methanol. Canadian Journal of Zoology 60, 1867-1870.
Hendrikx A. L., 2016. Impact of enrichment of unsaturated fatty acids during in vitro maturation of bovine oocytes and in vitro culture of embryos on blastocyst formation, phospholipid composition and cryosresistance. Honours Programme Veterinary Medicine, Utrecht University, Netherland 1-44.
Hochi S., Kimura K. and Hanada A., 1999. Effect of linoleic acid albumin in the culture medium on freezing sensitivity of in vitro-produced bovine morulae. Theriogenology 52, 497-504.
Hoegh-Guldberg O., Mumby P. J., Hooten A. J., Steneck R. S., Greenfield P., Gomez E., Harvell C. D., Sale P. F., Edwards A. J., Caldeira K., Knowlton N., Eakin C. M., Iglesias-Prierto R., Muthiga N., Bradbury R. H., Dubi A. and Hatziolos M. E., 2007. Coral reefs under rapid climate change and ocean acidification. Science 318(1737).
Holt W. V. and Pickard A. R., 1999. Role of reproductive technologies and genetic resource banks in animal conservation. Reviews of Reproduction 4, 143-150.
Holt W. V., Morris G. J., Coulson G. and North R. D., 1988. Direct observation of cold shock effects in ram spermatozoa with use of a programmable cryomicroscope. Journal of Experimental Zoology 246, 305-314.
Hughes J. B., 1973. An examination of eggs challenged with cryopreserved spermatozoa of the american oyster, Crassostrea virginica. Cryobiology 10, 342-344.
Hunt C. J., 2017. Cryopreservation: Vitrification and Controlled Rate Cooling. In: Stem Cell Banking (Crook J. and Ludwig T. eds). Methods in Molecular Biology 1590, 41-77.
Ieropoli S., Masullo P., Santo Mdo E. and Sansone G., 2004. Effects of extender composition, cooling rate, and freezing on the fertilization viability of spermatozoa of the pacific oyster (Crassostrea gigas). Cryobiology 49(3), 250-257.
Imai K., Kobayashi S., Goto Y., Dochi O. and Shimohira I., 1997. Cryopreservation of bovine embryos obtained by in-vitro culture of IVM-IVF oocytes in the presence of linoleic acid albumin. Theriogenology 47, 347.
Isachenko E., Isachenko V., Katkov I. I., Sanches P., van der Ven H. H. B., Montag M. and Nawroth F., 2007. Cryoprotectant-free vitrification of spermatozoa. In book: Vitrification In Assisted Reproduction: A User’s Manual and Troubleshooting Guide (Tucker M. and Liebermann J. eds) 1(5), 87-105.
Jones K. H. and Senft J. A., 1985. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. Journal of Histochemistry Cytochemistry 33, 77-79.
Jordan-Dahlgren E., 2002. Gorgonian distribution patterns in coral reef environments of the Gulf of Mexico: evidence of sporadic ecological connectivity? Coral Reefs 21, 205-215.
Judycka S., Szczepkowski M., Ciereszko A. and Dietrich G. J., 2015. New extender for cryopreservation of Siberian sturgeon, Acipenser baerii sperm. Cryobiology 70(2), 184-189.
Kawamoto T., Narita T., Isowa K., Aoki H., Hayashi M., Komaru A. and Ohta H., 2007. Effects of cryopreservation methods on post-thaw motility of spermatozoa from the Japanese pearl oyster, Pinctada fucata martensii. Cryobiology 54(1), 19-26.
Khosla K., Wang Y., Hagedorn M., Qin Z. and Bischof J., 2017. Gold nanorod induced warming of frozen embryos enhances viability. American Chemical Society. doi: 10.1021/acsnano.7b02216
Kopeika J., Thornhill A. and Khalaf Y., 2014. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Human Reproduction Update 21(2), 209-227.
Kumar S., Millar J. D. and Watson P. F., 2003. The effect of cooling rate on the survival of cryopreserved bull, ram and boar spermatozoa: a comparison of two controlled-rate cooling machines. Cryobiology 48(3), 246-253.
Labbe C., Robles V. and Herraez M. P., 2013. Cryopreservation of gametes for aquaculture and alternative cell sources for genome preservation. Woodhead Publishing Series in Food Science, Technology and Nutrition 76-116.
Lahnsteiner F., Weismann T. and Patzner R. A., 1997. Methanol as cryoprotectant and the suitability of 1.2 ml and 5 ml straws for cryopreservation of semen from salmonid fishes. Aquaculture Research 28(6), 471-479.
Lannan J. E., 1971. Experimental self-fertilization of the pacific oyster, Crassostrea gigas, utilizing cryopreserved sperm. Genetics 68, 599-601.
Lederman L., 2008. Cryopreservation. Biotechniques 45(6).
Lee Jr. R. E., Elnitsky M. A., Rinehart J. P., Hayward S. A. L., Sandro L. H. and Denlinger D. L., 2005. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica Antarctica. The Journal of Experimental Biology 209, 399-406.
Lee R. E., Chen C. P. and Denlinger D. L., 1987. A rapid cold-hardening process in insects. Science (238), 1415-1417.
Leekumjorn S. and Sum A. K., 2008. Molecular dynamics study on the stabilization of dehydrated lipid bilayers with glucose and trehalose. The Journal of Physical Chemistry B 112, 10732-10740.
Leibo S. P., 1981. Preservation of ova and embryos by freezing. In: New Technologies in Animal Breeding (Brackett E. G., Scidel G. E. and Seidel S. M. eds) Academic Press, New York, United State of America 127-139.
Lezcano M., Granja C. and Salazar M., 2004. The use of flow cytometry in the evaluation of cell viability of cryopreserved sperm of the marine shrimp (Litopenaeus vannamei). Cryobiology 48, 349-356.
Lin C. and Tsai S., 2012. Advantages and applications of cryopreservation in fisheries science. Brazilian Archives of Biology and Technology 55(3), 425-433.
Lin C., Han C. C. and Tsai S., 2013. Effect of thermal injury on embryos of banded coral shrimp (Stenopus hisidus) under hypothermal conditions. Cryobiology 66, 3-7.
Lin C., Kuo F. W., Chavanich S. and Viyakarn V., 2014. Membrane lipid phase transition behaviour of oocytes from three gorgonian corals in relation to chilling injury. PLoS ONE 9(3): e92812. doi:10.1371/journal.pone.0092812
Lin C., Zhang T., Kuo F. W. and Tsai S., 2011. Gorgonian coral (Junceella juncea and Junceella fragillis) oocytes chilling sensitivity in the context of adenosine triphosphate response (ATP). Cryoletters 32(2), 141-147.
Lin C., Zhang T., Kuo F. W. and Tsai S., 2011. Studies on oocytes chilling sensitivity in the context of ATP response of two gorgonian coral species (Junceella juncea and Junceella fragillis). CryoLetters 32, 141-147.
Linares C., Coma R., Garrabou J., Díaz D. and Zabala M., 2008. Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. Journal of Apply Ecology 45, 688-699.
Liu B. and Li X., 2008. Preliminary studies on cryopreservation of Sydney Rock Oyster (Saccostrea glomerata) larvae. Journal of Shellfish Research 27(5), 1125-1128.
Liu Y., Xu T., Robinson N., Qin J. and Li X., 2014. Cryopreservation of sperm in farmed Australian greenlip abalone, Haliotis laevigata. Cryobiology 68(2), 185-193.
los Reyes M. D., Saenz L. and Lapierre L., 2002. Evaluation of glucose as a cryoprotectant for boar semen. Veterinary Record 151, 477-480.
Lovelock J. E., 1957. The denaturation of lipid-protein complexes as a cause of damage by freezing. Proceedings of the Royal Society B: Biological Sciences 147, 427-434.
Marshall P. and Schuttenberg H., 2006. A reef manager’s guide to coral bleaching. Townsville: Great Barrier Reef Marine Park Authority, Townsville, Australia 163.
Martinez-Paramo S., Horvath A., Labbe C., Zhang T., Robles V., Herraez P., Suquet M., Adams S., Viveiros A., Tiersch T. R. and Cabrita E., 2016. Cryobanking of aquatic species. Aquaculture. doi: 10.1016/j.aquaculture.2016.05.042
Matsunaga H., Iwata N., Kurokira H. and Hirano R., 1983. A preliminary study about cryopreservation of abalone sperm. Journal of the Faculty Applied Biological Science, Hiroshima University, Japan 22, 135-139.
Mazur P., 1970. Cryobiology: the freezing of biological systems. Science 168, 939-946.
Mazur P., 1990. Equilibrium and quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophysical 17, 53-92.
Mazur P., Leibo S. P. and Chu E. H. Y., 1972. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue culture cells. Experimental Cell Research 71, 345-355.
McFadden C. S., Sanchez J. A. and France S. C., 2010a. Molecular Phylogenetic Insights into the Evolution of Octocorallia: A Review. Integrative and Comparative Biology 1-22.
McFadzen I. R. B., 1995. Cryopreservation of the Sperm of the Pacific Oyster, Crassostrea gigas. Cryopreservation and Freeze – Drying Protocol 3, 145-149.
McField M. D., 1999. Coral response during and after mass bleaching in Belize. Bulletin of Marine Science 64(1), 155-172.
Moberg F. and Folke C., 1999. Ecological goods and services of coral reef ecosystems. Ecological Economics 29(2), 215-233.
Moce E. and Graham J. K., 2006. Cholesterol-loaded cyclodextrins added to fresh bull ejaculates improve sperm cryosurvival. Journal of Animal Science 84, 826-833.
Moce E., Blanch E., Tomas C. and Graham J. K., 2010. Use of cholesterol in sperm cryopreservation, present moment and perspectives to future. Reproduction of Domestic Animal 45(2), 57-66.
Moce E., Purdy P. H. and Graham J. K., 2010. Treating ram sperm with cholesterol-loaded cyclodextrins improves cryosurvival. Animal Reproduction Science 118, 236-247.
Moraes E. A., Graham J. K., Torres C. A., Meyers M. and Spizziri B., 2010. Delivering cholesterol or cholestanol to bull sperm membranes improves cryosurvival. Animal Reproduction 118, 148-154.
Morrier A., Theriault M., Castonguay F. and Bailey J., 2004. Effect of cholesterol loaded methyl-b-cyclodextrin on ram sperm during cryopreservation, cold-shock and artificial insemination. Proceedings of the Society for the Study of Reproduction, 239.
Morris G. J., 1981. Cryopreservation: An introduction to cryopreservation in culture collections. Institute of Terrestrial Ecology, Cambridge, United Kingdom 27.
Mortimer S. and Vanderzwalmen P., 2006. Cryopreservation: to freeze or vitrify. In: Contemporary Perspectives on Assisted Reproductive Technology (Allahbadia G. N. and Merchant R. Eds.), Elsevier, New Delhi, India, 265-282.
Muldrew K. and McGann L. E., 1990. Mechanisms of intracellular ice formation. Biophysical Journal 57(3), 525-532.
Newton H., Fisher J., Arnold J. R. P., Pegg D. E., Faddy M. J. and Gosden R. G., 1998. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Human Reproduction 13(2), 376-380.
Odintsova N. A., Boroda A. V., Velansky P. V. and Kostetsky E. Y., 2009. The fatty acid profile changes in marine invertebrate larval cells during cryopreservation. Cryobiology 59, 335-343.
Odintsova N., Kiselev K., Sanina N. and Kostetsky E., 2001. Cryopreservation of primary cell cultures of marine invertebrates. CryoLetters 22, 299-310.
Ohki S., Morita M., Kitanabo S., Kowalska A. A. and Kowalski R. K., 2014. Cryopreservation of Acropora digitifera sperm with use of sucrose and methanol based solution. Cryobiology 69, 134-139.
Okazaki T., Shimizu M., Takahashi H., Izaike Y., Abe S., Maehara S. and Shiraishi T., 1997. Effect of linoleic acid-bovine serum albumin on the survival of in vitro produced bovine blastocysts after cryopreservation. Theriogenology 47, 354.
Paniagua-Chavez C. G. and Tiersch T. R., 2001. Laboratory studies of cryopreservation of sperm and trochophore larvae of the eastern oyster. Cryobiology 43, 211-223.
Paniagua-Chavez C. G., Jenkins J., Segovia M. and Tiersch T. R., 2006. Assessment of gamete quality for the eastern oyster (Crassostrea virginicia) by use of fluorescent dyes. Cryobiology 53, 128-138.
Paredes E. and Bellas J., 2009. Cryopreservation of sea urchin embryos, Paracentrotus lividus. Cryobiology 59, 344-350.
Paredes E. and Bellas J., 2009. Cryopreservation of sea urchin embryos, Paracentrotus lividus applied to marine ecotoxicological studies. Cryobiology 59, 344-350.
Pedro P. B., Yokoyama E., Zhu S. E., Yoshida N., Valdez Jr. D. M., Tanaka M., Edashige K. and Kasai M., 2005. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. Journal of Reproduction Development 51, 235-246.
Pegg D. E., 2002. The history and principles of cryopreservation. Seminar in Reproductive Medicine 20, 1.
Penland L., Kloulechad J., Idip D. and Woesik R. V., 2004. Coral spawning in the western Pacific Ocean is related to solar radiation: evidence of multiple spawning events in Palau. Coral reefs 23, 133-140.
Pereira R. and Marques C., 2008. Animal oocyte and embryo cryopreservation. Cell Tissue Banking 9, 267-277.
Phillips P. H. and Lardy H. A., 1940. A yolk-buffer pabulum for the preservation of bull semen. Journal of Dairy Science 23, 399-404.
Plachinta M., Zhang T. and Rawson D.M., 2004, Studies on cryoprotectant toxicity to zebrafish (Danio rerio) oocytes. Cryoletters 25(6), 415-424.
Pochon X. and Gates R. D., 2010. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Molecular Phylogenetics and Evolution 56(1), 492-497.
Poncet J. M. and Lebel J. M., 2003. Influence of cryoprotective agent and cooling rate on frozen and thawed hemocytes from the mollusk Haliotis tuberculate. Cryobiology 47, 184-189.
Purdy P. H. and Graham J. K., 2004a. Effect of cholesterol-loaded cyclodextrin on the cryosurvival of bull sperm. Cryobiology 48, 36-45.
Quinn P. J., 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology 22, 128-146.
Renard P., 1991. Cooling and freezing tolerances in embryos of the Pacific oyster, Crassostrea gigas: methanol and sucrose effects. Aquaculture 92, 43-57.
Reyes M. D. L., Saenz L. and Lapierre L., 2002. Evaluation of glucose as cryoprotectant for boar semen. Veterinary Record 151, 477-480.
Ring R. A. and Danks H. V., 1998. The role of trehalose in cold-hardiness and desiccation. CryoLetters 19, 275-282.
Ropke T., Oldenhof H., Leiding C., Sime H., Bollwein H. and Wolkers W. F., 2011. Liposomes for cryopreservation of bovine sperm. Theriogenology 76(8), 1465-1472.
Russell L. C., 2013. Algae: the world’s most important “plants” -an introduction. Mitigation and Adaptation Strategies Global Change 18, 5-12
Ryyananen L., 1996. Cold hardening and slow cooling: tools for successful cryopreservation and recovery of in vitro shoot tips of silver birch. Canadian Journal of Forest Research 26(11), 2015-2022.
Salm R. V., Done T. and McLeod E., 2006. Marine protected area planning in a changing climate. In: Coral reefs and climate change: science management. Coastal and Estuarine Studies 61.
Sanches E. G., Oliveira I. R., Serralheiro P. C. S. and Cerqueira V. R., 2005. Sperm cryopreservation of lane snapper Lutjanus synagris. Brazilian Journal Biology 75 (3), 662-669.
Sanchez J. A. and Lasker H. R., 2003. Patterns of morphological integration in marine modular organisms: supra-module organization in branching octocoral colonies. Proceedings of the Royal Society B: Biological Sciences 270(1528).
Santiago-Vazquez L. Z., Newberger N. C. and Kerr R. G., 2007. Cryopreservation of the dinoflagellate symbiont of the octocoral Pseudopterogorgia elisabethae. Marine Biology 152, 549-556.
Schneider U. and Mazur P., 1984. Osmotic consequences of cryoprotectant permeability and its relation to the survival of frozen-thawed embryos. Theriogenology 21(1), 68-79.
Schrijnemakers E. W. M. and Iren F. V., 1995. A two step or equilibrium freezing procedure for the cryopreservation of plant cell suspensions. Method in Molecular Biology 38, 103-111.
Seidel Jr. G. E, 2006. Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 65, 228-235.
Shaluei F., Imanpoor M. R., Shabani A. and Nasr-Esfahani M. H., 2013. Effect of different concentrations of permeable and non-permeable cryoprotectants on the hatching rate of goldfish (Carassius auratus) embryos. Asian Pacific Journal of Reproduction 185-188.
Shao M. Y., Zhang Z. F., Yu L., Hu J. J. and Kang K. H., 2006. Cryopreservation of sea cucumber Apostichopus japonicus (Selenka) sperm. Aquaculture Research 37, 1450-1457.
Shikina S., Chiu Y. L., Chung Y. J., Chen C. J., Lee Y. H. and Chang C. F., 2016. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis. Scientific Report 6, 25868.
Staeger W. H., 1974. Cryobiological investigations of the gametes of the pacific oyster Crassostrea gigas. Oregon State University, Corvallis, Oregon, United State of America 1-35.
Stat M., Loh W. K. W. and LaJeunesse T. C., 2009. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef Coral Reef. Coral Reefs 28, 709-713.
Steponkus P. L., Dowgert M. F. and Gordon-Kamm W. J., 1983. Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: The influence of cold acclimation. Cryobiology 20, 448-465.
Steponkus P. L., Langis R. and Fujikawa S., 1992. Cryopreservation of plant tissues by vitrification. In: Advances in Low-Temperature Biology (Steponkus ed), JAI Press, London, United Kingdom 1, 1-61.
Suquet M., Labbe C., Puyo S., Mingant C., Quittet B., Boulais M., Queau I., Ratiskol D., Diss B. and Haffray, 2014. Survival, growth and reproduction of cryopreserved larvae from a marine invertebrate, the pacific oyster Crassostrea gigas. PLoS ONE 9(4): e93486. doi: http://doi.org/10.1371/journal.pone.0093486
Swart P. K., 2013. Coral Reefs: Canaries of the Sea, Rainforests of the Oceans. Nature Education Knowledge 4(3), 5.
Tervit H. R., Adams S. L., Roberts R. D., McGowan L. T., Pugh P. A., Smith J. F. and Janke A. R., 2005. Successful cryopreservation of Pacific oyster Crassostrea gigas oocytes. Cryobiology 51, 142-151.
Toma´ s C., Blanch E. and Moce E., 2008. Cholesterol addition improves goat sperm quality after cryopreservation. Reproduction Domestic Animal 43, 53.
Toma´ s C., de Mercado E., Blanch E., Go´ mez-Izquierdo E. and Moce E., 2009c. Treating fresh boar sperm with cyclodextrin preloaded with cholesterol improves the osmotic tolerance limits. Annual Meeting of the Brithish Andrology Society “Recent Developments and Future Perspectives in Andrology”, Queen’s University, Belfast, Ireland 19-20.
Torner H., Brussow K. P., Alm H., Ratky J., Pohland R., Tuchscherer A. and Kanitz W., 2004. Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depends on the stage of pre-ovulatory maturation. Theriogenology 61, 1675-1689.
Tsai H. P. and Chao N. H., 1994. Cryopreservation of small abalone (Haliotis diversicolor) sperm technique and its significance. Journal of the Fisheries Society of Taiwan 21, 347-360.
Tsai S. and Lin C., 2012. The effect of chilling and cryoprotectants on hard coral (Echinopora spp.) oocytes during short-term low temperature preservation. Theriogenology 77, 1257-1261.
Tsai S., Chen J. C., Spikings E., Li J. J. and Lin C., 2014. Degradation of mitochondrial DNA in cryoprotectant-treated hard coral (Echinopora spp.) oocytes. Mitochondrial DNA 26(3), 420-425.
Tsai S., Chong G., Meng P. J. and Lin C., 2017. Sugars as supplemental cryoprotectants for marine organisms. Reviews in Aquaculture 1-13.
Tsai S., Rawson D. M. and Zhang T., 2008. Studies on cryoprotectant toxicity to early stage zebrafish (Danion rerio) ovarian follicle. CryoLetters 29, 477-483.
Tsai S., Spikings E., Huang I. C. and Lin C., 2011. Study on mitochondrial activity and membrane potential after exposing later stage oocytes of two gorgonian corals (Junceella juncea and Junceella fragillis) to cryoprotectants. CryoLetters 32(1), 1-12.
Tsai S., Spikings E., Kuo F. W., Lin N. C. and Lin C., 2010. Use of an adenosine triphosphate assay, and simultaneous staining with fluorescein diacetate and propidium iodine, to evaluate the effects of cryoprotectants on hard coral (Echinopora spp.) oocytes. Theriogenology 73, 605-611.
Tsai S., Thongpooe P., Kuo F. W. and Lin C., 2015. Impacts of low temperature preservation on mitochondrial DNA copy number in oocytes of the hard coral Echinopora sp. Mitochondrial DNA 27(4), 2512-2515.
Tsai S., Yang V. and Lin C., 2016. Comparison of the cryo-tolerance of vitrified gorgonian oocytes. Scientific Report 6, 23290. doi: 10.1038/srep23290
Tsai S., Yen W., Chavanich S., Viyakarn V. and Lin C., 2015. Development of cryopreservation techniques for gorgonian (Junceella juncea) oocytes through vitrification. PLoS ONE 10(5): e0123409. doi:10.1371/journal.pone.0123409
Uemura M., Joseph R. A. and Steponkus P. L., 1995. Cold acclimation of Arabidopsis thaliana: Effect on plasma membrane lipid composition and freeze induced lesion. Plant Physiology 109, 15-30.
van Oppen M. J. H., Oliver J. K., Putnam H. M. and Gates R. D., 2014. Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences of the United States of America 112(8), 2307-2313.
Viyakarn V., Chavanich S., Chong G., Tsai S. and Lin C., 2017. Cryopreservation of coral Acropora humilis sperm. Cryobiology. doi: 10.1016/j.cryobiol.2017.10.007
Vuthiphandchai V., Nimrat S., Kotcharat S. and Bart A. N., 2007. Development of a Cryopreservation Protocol for Long Term Storage of Black Tiger Shrimp. Theriogenology 68, 1192-1199.
Walker T. A. and Bull G. D., 1983. A newly discovered method of reproduction in gorgonian coral. Marine Ecology Progress Series 12, 137-143.
Watson P. F., 1981. The effects of cold shock on sperm cell membranes. In: Effects of Low Temperatures on Biological Membranes (Morris G. J. and Clark A. eds). Academic Press, London, United Kingdom 189-218.
Watson P. F., 1995. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reproduction, Fertility and Development 7, 871-891.
Wells S., Ravilious C. and Corcoran E., 2006. In the front line: shoreline protection and other ecosystem services from mangroves and coral reefs. UNEP. WCMC, Cambridge, United Kingdom, 33.
West J. M., 1997. Plasticity in the sclerites of a gorgonian coral: tests of water motion, light level, and damage cues. The Biological Bulletin 192, 279-289.
West J. M., 1998. The dual role of sclerites in a gorgonian coral: conflicting functions of support and defence. Evolutionary Ecology 12, 803-821.
Whitehead L. F. and Douglas A. E., 2003. Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. The Journal of Experimental Biology 206, 3149-3157.
Whittingham D. G., 1980. Principles of embryo preservation. In: Low Temperature Preservation in Medicine and Biology (Ashwood-Smith M. J. and Farrant J. eds), University Park Press, Maryland, United State of America 65-84.
Wildt D. E., Rall W. F., Critser J. K., Monfort S. L. and Seal U. S., 1997. Genome resource banks: living collections for biodiversity conservation. Bioscience 47, 689-698.
Wirshing H. H., Messing C. G., Douady C. J., Reed J., Stanhope M. J. and Shiviji M. S., 2005. Molecular evidence for multiple lineages in the gorgonian family Plexauridae (Anthozoa: Octocorallia). Marine Biology 147, 497-508.
Wolfe J. and Bryant G., 2001. Cellular cryobiology: thermodynamic and mechanical effects. International Journal of Refrigeration 24(5), 438-450.
Wusterman M., Robinson M. and Pegg D., 2004. Vitrification of large tissue with dielectric warming: biological problems and some approaches to their solution. Cryobiology 48(2), 179-189.
Yang G., Wen J., Han Y. and Hou M., 2018. Rapid cold hardening confers a transient increase in low temperature survival in diapausing Chilo suppressalis larvae. Insects 9, 53.
Yang H., Hu E., Ceuvas-Uribe R., Supan J., Guo X. and Tiersch T. R., 2012. High-throughput sperm cryopreservation of eastern oyster Crassostrea virginica. Aquaculture 344-349, 223-230.
Yankson K. and Movse J., 1991. Cryopreservation of the spermatozoa of Crossostrea tulipa and three other oyster. Aquaculture 97, 259-267.
Zell S. R., Bamford M. H. and Hidu H., 1979. Cryopreservation of spermatozoa of the American oyster, Crassostrea virginica Gmelin. Cryobiology 16(5), 448-460.
Zeron Y., Ocheretny A., Kedar O., Borochov A., Sklan D. and Arav A., 2001. Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 121, 447-454.
Zeron Y., Pearl M., Borochov A. and Arav A., 1999. Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes. Cryobiology 38(1), 35-42.
Zhang J. M., Sheng Y., Cao Y. Z., Wang H. Y. and Chen Z. J., 2011. Effects of cooling rates and ice-seeding temperatures on the cryopreservation of whole ovaries. Journal of Assisted Reproduction and Genetics 28(7), 627-633.
Zhang T., Isayeva A., Adams S. L. and Rawson D. M., 2005. Studies on membrane permeability of zebrafish (Danio rerio) oocytes in the presence of different cryoprotectants. Cryobiology 50(3), 285-293.
Zhao Y. Y., 2017. Cryopreservation of the gorgonian coral endosymbiont Symbiodinium using vitrification and programmable freezing. National Dong Hwa University, Taiwan, 1-71.
Ziegler R., Ashida M., Fallon A. M., Wimer L. T., Wyatt S. S. and Wyatt G. R., 1979. Regulation of glycogen phosphorylase in fat body of Cecropia silk moth pupae. Journal of Comparative Physiology 131(4), 321-332.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *