帳號:guest(3.144.3.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃聖越
作者(英文):Sheng-Yueh Huang
論文名稱:一類邊界值問題的格林函數
論文名稱(英文):The Green functions of a class of the boundary value problems
指導教授:張菁華
指導教授(英文):Ching-Hua Chang
口試委員:王昆湶
郭仲成
口試委員(英文):Kun-Chuan Wang
Chung-Cheng Kuo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:應用數學系
學號:610611009
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:23
關鍵詞:格林函數歐拉多項式歐式多項式邊界值問題
關鍵詞(英文):Green functionEuler polynomialsEulerian polynomialsthe Boundary value problem
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
在這篇論文中,我們會介紹歐拉多項式、歐式多項式以及建構一個新的多項式,G多項式。G多項式是一種與歐式多項式很相似的多項式。接著,我們會介紹一些關於G多項式的性質,並且提出一個G多項式的行列式表達式。此外,我們會去證明這類邊界值問題$(-i)^nu^{(n)}=f$,且我們有當$j$是小於$n-1$的奇數時, $u^{(j)}(1)=\alpha u^{(j)}(0)$ 且當$j$是小於$n-1$的偶數時, $u^{(j)}(1)=\beta u^{(j)}(0)$ 的格林函數會有一個G多項式的表達形式。
In this these, we will introduce some properties of Euler polynomials, Eulerian polynomials and construct another kind of polynomials named G-polynomials which are similar to Eulerian polynomials. Moreover, the Green function of a two-point boundary value problem $(-i)^nu^{(n)}=f$, $u^{(j)}(1)=\alpha u^{(j)}(0) \quad (1 \leq j \leq n)$ for $j$ is odd, and $u^{(j)}(1)=\beta u^{(j)}(0) \quad (0 \leq j \leq n)$ for $j$ is even, is constructed explicitly by means of the G-polynomial. Another result is an interesting form of polynomials. The method is based on [4].
第一章 Introduction  1
第二章 Some properties and theorems  5
第三章 Main theorem  17
\bibitem{Handbook} M. Abramowitz and A. Stegun, Handbook of Mathematical Functions, Appl. Math. Ser. 55, National Bureau of Standards, Washington D.C., 1972.

\bibitem{Carlitz2} A. L. Carlitz, Eulerian numbers and polynomials, Math. Mag. \textbf{32}, 1959, 247-260.

\bibitem{Euler} L. Euler, Institutiones calculi differentials, Vol. II, Petrograd, 1755.

\bibitem{Costabile}F. Costabile, F. Dell’accio, and M. I. Gualtieri, A new approach to Bernoulli polynomials, Vol. 26, Roma, 2006.

\bibitem{Laila}Laila Qadriah, The properties of the generalized Eulerian polynomials, 2013, the thesis of master.

\bibitem{Chang}Ching-Hua Chang and Chung-Wei Ha, The Green functions of some boundary value problems via the Bernoulli and Euler polynomials, Arch. Math. 76, 2001.

\bibitem{Chang}Ching-Hua Chang and Chung-Wei Ha, The Green functions of a class of boundary value problems and their traces, Numer. Funct. Anal. And Optimiz. , 23, 2002.


\bibitem {Stakgold} Stakgold, I. Green's Functions and Boundary Value Problems. John Wiley & Sons: New York, 1979.

\bibitem {Euler} L. Euler, Institutiones calculi differentialis, Vol. II, Petrograd, 1755.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *