帳號:guest(3.147.81.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Siti Fatimah
作者(英文):Siti Fatimah
論文名稱:A theoretical study of mass spectra of Isomaltose and Laminaribiose
論文名稱(英文):A theoretical study of mass spectra of Isomaltose and Laminaribiose
指導教授:張秀華
指導教授(英文):Hsiu-Hwa Chang
口試委員:梁剛荐
楊雪慧
口試委員(英文):Max K. Leong
Hsueh-Hui Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610612004
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:79
關鍵詞(英文):Theoretical studyIsomaltoseLaminaribiose
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
Isomaltose (C12H22O11)with a α-(1-6)-linkage and laminaribiose (C12H22O11) with a β-(1-3)-linkage show different types of cross-ring fragmentation in mass spectra after treated by QTH (Quartz Tungsten Halogen Lamp) treatment. Unusually, the isomaltose has the unique 0.2A2 fragment which was not found in the spectrum of QTH- treated laminaribiose. In this thesis, the ab initio electronic structure calculations are executed to explore dissociation channels of neutral isomaltose and laminaribiose. The single reactants, reactive intermediates, transition states, and decomposition products of isomaltose and laminaribiose geometries and frequencies harmonic were computed via B3LYP/cc-pVTZ calculations. The reaction pathways of isomaltose and laminaribiose indicate the higher activation energy of 0.2A2 fragment in laminaribiose than that of isomaltose, which means the higher energy to release that fragment in laminaribiose than isomaltose. It appears to provide an explanation for the unique 0.2A2 fragment which was not found in the spectrum of QTH-treated for laminaribiose. The results are to be compared with and to explain the observed mass spectra.
1. Introduction 1
2. Theoretical methods 3
2.1 Density Functional Theory 4
3. Result and Discussions 5
3.1 Neutral isomaltose 5
3.2 Dissociation channels of neutral isomaltose 5
3.3 Neutral laminaribiose 11
3.4 Dissociation channels of neutral laminaribiose 11
4. Conclusion 16
5. Reference 17
Table 1 . 19
Table 2 . 29
Figure 1 . 39
Figure 2 . 47
Figure 3 . 48
Figure 4 . 49
Figure 5 . 50
Figure 6 . .51
Figure 7 . 60
Figure 8 67
Figure 9 . 75
Figure 10 76
Figure 11 . 77
Supporting information 78

[1] Ou, Y.M., Kuo, S.Y., Lee, H., Chang, H.T., Wang, Y.S. J. Vis. Exp, 2018, 137, e57660.
[2] Pereira C.S., Kony D., Baron R., Müller M., vanGunsteren W.F., Hünenberger P.H. Biophys J, 2006, 90, 4337–44
[3] Sugisawa, H., Edo, H. Journal of Food Science, 1966, 31 (4): 561.
[4] Matsuo, K. Biomedical Spectroscopy and Imaging, 2017, 111 – 121.
[5] Berg, J. M., Tymoczko, J. L., Stryer, L., & Stryer, L. Biochemistry. 2002. New York: W.H. Freeman.
[6] Yang H., Shi L., Yao W., Wang Y., Huang L., Wan D., Liu S. J. Am. Soc. Mass Spectrom. 2015, 26, 1599–1605.
[7] Bythell B.J., Abutokaikah, M.T., Wagoner, A.R., Guan S., Rabus, J.M. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry. J. Am. Soc. Mass Spectrom, 2017, 28, 688–703.
[8] Levine, I.N. Quantum Chemistry. 2004, 573.
[9] Vosko, S.H., Wilk, L., Nusair, M. Can. J. Phys. 1980, 58, 1200.
[10] Levine, I.N. Quantum Chemistry. 2004, 308.
[11] Becke, A.D. J. Chem. Phys. 1993, 98, 5648-5652.
[12] Lee, C., Yang, W., Parr, R.G. Phys. Rev. 1988, B37, 785-789.
[13] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
[14] Argaman, N., Makov, G. arXiv:physics, 1999.
[15] Ziegler, T. Chem. Rev. 1991, 91, 5, 651–667.
[16] Honenberg, P., Kohn, W. Phys. Rev. 1964, 136, B864.
[17] Kohn, W., Sham, L.J. Phys. Rev. 1965, 140, A133.
[18]Becke, A.D. Phys. Rev. A. 1988, 38, 3098-3100.
[19]Becke, A.D. J. Chem. Phys. 1992, 97, 9173-9177.
[20] Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J. J. Phys. Chem., 1994, 98, 45, 11623–11627.
(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *