帳號:guest(3.21.247.245)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:葉佳恩
作者(英文):Chia-En Yeh
論文名稱:以動物模式探討高脂聯素表現之脂肪幹細胞移植對於第二型糖尿病之療效與作用機轉
論文名稱(英文):To investigate the efficacy and mechanism for the transplantation of adipose-derived stem cells with high adiponectin level by type 2 diabetes mellitus mouse model
指導教授:邱紫文
指導教授(英文):Tzyy-Wen Chiou
口試委員:袁大鈞
韓鴻志
口試委員(英文):Ta-Chun Yuan
Horng-Jyh Harn
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610613003
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:56
關鍵詞:脂肪幹細胞脂聯素第二型糖尿病高油脂飼料AMPKNF-κB
關鍵詞(英文):Adipose-derived stem cellsAdiponectinType 2 diabetesHigh fat dietAMPKNF-κB
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
脂肪幹細胞 (ADSCs) 具有調控與分泌多種脂肪激素的功能,因此在治療第二型糖尿病上具有巨大的潛力。脂肪細胞所分泌的脂聯素是已知可以改善代謝異常、免疫發炎反應以及胰島素阻抗性的抗糖尿病脂肪激素。本研究以脂聯素為標靶,篩選可提高 ADSC 脂聯素表現之藥物,並探討高脂聯素表現之 ADSCs 應用於第二型糖尿病治療之可行性以及其作用機制。研究中以 PT56 ADSCs 為藥物篩選平台,我們發現小分子藥物 TW03 可以藉由降低 Adipo-R2 中的 DNA 甲基化狀態,增加 ADSCs 的脂聯素表現量。研究中利用高脂飼料 (HFD) 誘發第二型糖尿病小鼠模型,評估 TW03 預處理的 ADSC (即高脂聯素表達之 ADSCs) 移植後的療效。相較於單獨 ADSC 移植,我們發現 TW03 預處理的 ADSC 移植更能顯著地改善肥胖與胰島素阻抗性相關的主要參數,包含空腹血糖值、胰島素值、三酸甘油脂、總膽固醇濃度、葡萄糖耐受性以及胰島素阻抗性指標。這些療效可能是來自 ADSCs 的脂聯素,經由旁分泌作用激活肝臟細胞中的 AMPK 和 P38 MAPK 途徑。研究中也發現 TW03 預處理的 ADSC 移植後可以降低肝臟中 NF-κB 的活化程度以及 NF-κB 所轉錄的目標基因 IL-1β 和 TNF-α 的表現量,而這些細胞保護作用促進第二型糖尿病鼠肝臟葡萄糖代謝的修復。對於第二型糖尿病的療效,本研究結合了小分子藥物與 ADSC 移植,提供了可能的治療機制以及新的治療策略。
Adipose-derived stem cells (ADSCs) show great clinical potential on treating type 2 diabetes due to their abilities for regulation/secretion of adipose-associated cytokines. Adiponectin is an anti-diabetic adipokine secreted by adipocytes and has been found related to metabolic dysfunctions, inflammation and insulin resistance. Using adiponectin as the target, the aim of this study is to screen for drugs that increase the expression of adiponectin in ADSCs, and to investigate the feasibility and mechanism of ADSCs with high adiponectin expression in the treatment of type 2 diabetes. In this study, using PT56 ADSCs as a drug-screening platform, we found that the small molecule TW03 could increase the expression level of adiponectin in ADSCs by reducing DNA methylation statuses in Adipo-R2. The therapeutic efficacies of TW03-pretreated ADSCs’ transplantation were evaluated using high fat diet (HFD)-induced type 2 diabetic mouse model. In comparison with the untreated ADSCs, it was found that the transplantation of TW03-pretreated ADSCs led to the improvement in key parameters related to obesity and insulin resistance, such as fasting blood glucose, insulin, triglyceride, total cholesterol levels, IPGTT and HOMA-IR values. The therapeutic benefits might be attributed to the high amount of adiponectin which activated AMPK and P38 MAPK pathways in hepatocytes via paracrine signaling. It was also demonstrated that the NF-κB activation status was reduced and transcriptional targets of NF-κB (i.e. proinflammatory cytokines including IL-1β and TNF-α) were also decreased due to the TW03-pretreated ADSCs’ transplantation. These cytoprotective effects resulted in the restoration of hepatic glucose metabolism in type 2 diabetic mice. This study provides putative therapeutic mechanisms and a novel strategy including a small molecule drug combined with ADSC transplantation that delivers the therapeutic benefits for type 2 diabetes.
中文摘要…………………………………………………………………………...…………......................I
英文摘要……………………………………………………………………………...........................III
目錄……………………………………………………………………………………..........................………V
一、 研究動機與研究目的………………………………………………………………..............……1
二、 背景及重要性介紹……………………………………………………………...................3
2.1 糖尿病……………………………………………………………………………….........................3
2.2 脂肪幹細胞……………………………………...……………………………….....................…4
2.3 幹細胞在第二型糖尿病治療的應用現況…...………….……………….........………….4
2.4 脂聯素…………………………………….………………………………………….......................8
2.5 高油脂飼料誘導第二型糖尿病………………………………………………..............……..9
三、 研究材料與方法…………………………………………………………................……………11
3.1 實驗設計……………………………………………………………………….......................……11
3.2 人類脂肪幹細胞來源及培養條件...…………………………………............…………….12
3.3 實驗小鼠飼養……………………………………………………………….....................………12
3.4 糖尿病鼠的誘導和脂肪幹細胞移植..…………………………………………….............12
3.5 空腹葡萄糖耐受性試驗……………………………………………………...…...............….13
3.6 酵素連結免疫分析法……………………………...……………………………................….13
3.7 血糖、總膽固醇和三酸甘油脂測定……………………………...…...........…………….13
3.8 西方轉印法……………………………………………………………………….......................14
3.9 即時聚合酶連鎖反應…………………………………..……………………….................….14
3.10 亞硫酸鹽定序……………………………..…………………………………….....................15
3.11 蘇木精–伊紅染色………………………………………………………….................…...….16
3.12 統計分析………………………………………………………………….………......................16
四、 實驗結果與討論……………………………………………………………………...............….17
4.1 小分子藥物 TW03 能提升 PT56 脂肪幹細胞脂聯素基因表現,且具有濃度
依賴和時間依賴性…………………………………….…………….....................……….…17
4.2 小分子藥物 TW03 可以藉由降低 Adipo-R2 甲基化程度,進而提升 PT56
脂肪幹細胞脂聯素基因表現……………………………………………….................……….19
4.3 高油脂飼料誘導二型糖尿病模型確認…………………….………………...........…..….22
4.4 TW03 藥物預處理之 PT56 脂肪幹細胞移植後能改善血糖、血脂、葡萄糖耐
受性和二型尿病相關血液生化數值…..……………………………………............……...23
4.5 TW03 藥物預處理之 PT56 脂肪幹細胞移植可藉由調控糖尿病鼠肝臟中的粒
線體生成、糖解和糖質新生作用相關酵素基因表現來改善葡萄糖代謝…...….…30
4.6 TW03 藥物預處理之 PT56 脂肪幹細胞移植後能增加糖尿病鼠肝臟中AMPK
和 p38 MAPK 的活化,並在短期內降低肝臟的免疫發炎反應…………….....…..33
五、 實驗結論………………………………………………………………….………................….….41
六、 參考文獻………………………………………………………………………………...................43

Al-Awar, A., Kupai, K., Veszelka, M., Szucs, G., Attieh, Z., Murlasits, Z., . . . Varga, C. (2016). Experimental Diabetes Mellitus in Different Animal Models. J Diabetes Res, 2016, 9051426. doi:10.1155/2016/9051426
Andrikopoulos, S., Blair, A. R., Deluca, N., Fam, B. C., & Proietto, J. (2008). Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab, 295(6), E1323-1332. doi:10.1152/ajpendo.90617.2008
Badimon, L., & Cubedo, J. (2017). Adipose tissue depots and inflammation: effects on plasticity and resident mesenchymal stem cell function. Cardiovasc Res, 113(9), 1064-1073. doi:10.1093/cvr/cvx096
Balcazar Morales, N., & Aguilar de Plata, C. (2012). Role of AKT/mTORC1 pathway in pancreatic beta-cell proliferation. Colomb Med (Cali), 43(3), 235-243.
Chen, Z., Sheng, L., Shen, H., Zhao, Y., Wang, S., Brink, R., & Rui, L. (2012). Hepatic TRAF2 regulates glucose metabolism through enhancing glucagon responses. Diabetes, 61(3), 566-573. doi:10.2337/db11-0474
Cho, K. S., Park, M. K., Kang, S. A., Park, H. Y., Hong, S. L., Park, H. K., . . . Roh, H. J. (2014). Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators Inflamm, 2014, 436476. doi:10.1155/2014/436476
Cohen, S. S., Gammon, M. D., Signorello, L. B., North, K. E., Lange, E. M., Fowke, J. H., . . . Matthews, C. E. (2011). Serum adiponectin in relation to body mass index and other correlates in black and white women. Ann Epidemiol, 21(2), 86-94. doi:10.1016/j.annepidem.2010.10.011
Deeds, M. C., Anderson, J. M., Armstrong, A. S., Gastineau, D. A., Hiddinga, H. J., Jahangir, A., . . . Kudva, Y. C. (2011). Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim, 45(3), 131-140. doi:10.1258/la.2010.010090
Engin, A. (2017). The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Adv Exp Med Biol, 960, 221-245. doi:10.1007/978-3-319-48382-5_9
Fang, H., & Judd, R. L. (2018). Adiponectin Regulation and Function. Compr Physiol, 8(3), 1031-1063. doi:10.1002/cphy.c170046
Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B., & Karasik, A. (1993). Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem, 268(35), 26055-26058.
Fitts, D. A. (2011). Ethics and animal numbers: informal analyses, uncertain sample sizes, inefficient replications, and type I errors. J Am Assoc Lab Anim Sci, 50(4), 445-453.
Hassanshahi, A., Hassanshahi, M., Khabbazi, S., Hosseini-Khah, Z., Peymanfar, Y., Ghalamkari, S., . . . Xian, C. J. (2019). Adipose-derived stem cells for wound healing. J Cell Physiol, 234(6), 7903-7914. doi:10.1002/jcp.27922
Heydemann, A. (2016). An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus. J Diabetes Res, 2016, 2902351. doi:10.1155/2016/2902351
Ho, J. H., Tseng, T. C., Ma, W. H., Ong, W. K., Chen, Y. F., Chen, M. H., . . . Lee, O. K. (2012). Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozocin-induced diabetic mice. Cell Transplant, 21(5), 997-1009. doi:10.3727/096368911X603611
Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259(5091), 87-91.
Hu, J., Li, C., Wang, L., Zhang, X., Zhang, M., Gao, H., . . . Wang, Y. (2012). Long term effects of the implantation of autologous bone marrow mononuclear cells for type 2 diabetes mellitus. Endocr J, 59(11), 1031-1039.
Karasawa, H., Nagata-Goto, S., Takaishi, K., & Kumagae, Y. (2009). A novel model of type 2 diabetes mellitus based on obesity induced by high-fat diet in BDF1 mice. Metabolism, 58(3), 296-303. doi:10.1016/j.metabol.2008.09.028
Kim, A. Y., Park, Y. J., Pan, X., Shin, K. C., Kwak, S. H., Bassas, A. F., . . . Kim, J. B. (2015). Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun, 6, 7585. doi:10.1038/ncomms8585
Leal Vde, O., & Mafra, D. (2013). Adipokines in obesity. Clin Chim Acta, 419, 87-94. doi:10.1016/j.cca.2013.02.003
Lebeck, J., Gena, P., O'Neill, H., Skowronski, M. T., Lund, S., Calamita, G., & Praetorius, J. (2012). Estrogen prevents increased hepatic aquaporin-9 expression and glycerol uptake during starvation. Am J Physiol Gastrointest Liver Physiol, 302(3), G365-374. doi:10.1152/ajpgi.00437.2011
Lee, J., Narayan, V. P., Hong, E. Y., Whang, W. K., & Park, T. (2017). Artemisia Iwayomogi Extract Attenuates High-Fat Diet-Induced Hypertriglyceridemia in Mice: Potential Involvement of the Adiponectin-AMPK Pathway and Very Low Density Lipoprotein Assembly in the Liver. Int J Mol Sci, 18(8). doi:10.3390/ijms18081762
Li, H. Y., Chiu, Y. F., Hwu, C. M., Sheu, W. H., Hung, Y. J., Fujimoto, W., . . . Chuang, L. M. (2008). The negative correlation between plasma adiponectin and blood pressure depends on obesity: a family-based association study in SAPPHIRe. Am J Hypertens, 21(4), 471-476. doi:10.1038/ajh.2008.5
Li, J., Xue, Y. M., Zhu, B., Pan, Y. H., Zhang, Y., Wang, C., & Li, Y. (2018). Rosiglitazone Elicits an Adiponectin-Mediated Insulin-Sensitizing Action at the Adipose Tissue-Liver Axis in Otsuka Long-Evans Tokushima Fatty Rats. J Diabetes Res, 2018, 4627842. doi:10.1155/2018/4627842
Liu, M., & Liu, F. (2009). Transcriptional and post-translational regulation of adiponectin. Biochem J, 425(1), 41-52. doi:10.1042/BJ20091045
Liu, X., Zheng, P., Wang, X., Dai, G., Cheng, H., Zhang, Z., . . . An, Y. (2014). A preliminary evaluation of efficacy and safety of Wharton's jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther, 5(2), 57. doi:10.1186/scrt446
Liu, Z., Xiao, T., Peng, X., Li, G., & Hu, F. (2017). APPLs: More than just adiponectin receptor binding proteins. Cell Signal, 32, 76-84. doi:10.1016/j.cellsig.2017.01.018
Lohan, P., Treacy, O., Morcos, M., Donohoe, E., O'Donoghue, Y., Ryan, A. E., . . . Griffin, M. D. (2018). Interspecies Incompatibilities Limit the Immunomodulatory Effect of Human Mesenchymal Stromal Cells in the Rat. Stem Cells, 36(8), 1210-1215. doi:10.1002/stem.2840
Murata, Y., Narisawa, Y., Shimono, R., Ohmori, H., Mori, M., Ohe, K., . . . Enjoji, M. (2017). A high fat diet-induced decrease in hippocampal newly-born neurons of male mice is exacerbated by mild psychological stress using a Communication Box. J Affect Disord, 209, 209-216. doi:10.1016/j.jad.2016.11.046
Perbellini, F., Gomes, R. S., Vieira, S., Buchanan, D., Malandraki-Miller, S., Bruyneel, A. A., . . . Carr, C. A. (2015). Chronic High-Fat Feeding Affects the Mesenchymal Cell Population Expanded From Adipose Tissue but Not Cardiac Atria. Stem Cells Transl Med, 4(12), 1403-1414. doi:10.5966/sctm.2015-0024
Qatanani, M., & Lazar, M. A. (2007). Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev, 21(12), 1443-1455. doi:10.1101/gad.1550907
Ruan, H., & Dong, L. Q. (2016). Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol, 8(2), 101-109. doi:10.1093/jmcb/mjw014
Rui, L. (2014). Energy metabolism in the liver. Compr Physiol, 4(1), 177-197. doi:10.1002/cphy.c130024
Sheng, L., Zhou, Y., Chen, Z., Ren, D., Cho, K. W., Jiang, L., . . . Rui, L. (2012). NF-kappaB-inducing kinase (NIK) promotes hyperglycemia and glucose intolerance in obesity by augmenting glucagon action. Nat Med, 18(6), 943-949. doi:10.1038/nm.2756
Shin, J. H., Kim, I. Y., Kim, Y. N., Shin, S. M., Roh, K. J., Lee, S. H., . . . Seong, J. K. (2015). Obesity Resistance and Enhanced Insulin Sensitivity in Ahnak-/- Mice Fed a High Fat Diet Are Related to Impaired Adipogenesis and Increased Energy Expenditure. PLoS One, 10(10), e0139720. doi:10.1371/journal.pone.0139720
Srinivasan, K., & Ramarao, P. (2007). Animal models in type 2 diabetes research: an overview. Indian J Med Res, 125(3), 451-472.
Tiikkainen, M., Hakkinen, A. M., Korsheninnikova, E., Nyman, T., Makimattila, S., & Yki-Jarvinen, H. (2004). Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes, 53(8), 2169-2176.
Van Herck, M. A., Vonghia, L., & Francque, S. M. (2017). Animal Models of Nonalcoholic Fatty Liver Disease-A Starter's Guide. Nutrients, 9(10). doi:10.3390/nu9101072
Villarreal-Molina, M. T., & Antuna-Puente, B. (2012). Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie, 94(10), 2143-2149. doi:10.1016/j.biochi.2012.06.030
Wang, J., Liao, L., & Tan, J. (2011). Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions. Expert Opin Biol Ther, 11(7), 893-909. doi:10.1517/14712598.2011.574119
Wang, Z. V., & Scherer, P. E. (2016). Adiponectin, the past two decades. J Mol Cell Biol, 8(2), 93-100. doi:10.1093/jmcb/mjw011
Xie, M., Hao, H. J., Cheng, Y., Xie, Z. Y., Yin, Y. Q., Zhang, Q., . . . Han, W. D. (2017). Adipose-derived mesenchymal stem cells ameliorate hyperglycemia through regulating hepatic glucose metabolism in type 2 diabetic rats. Biochem Biophys Res Commun, 483(1), 435-441. doi:10.1016/j.bbrc.2016.12.125
Yadav, A., Kataria, M. A., Saini, V., & Yadav, A. (2013). Role of leptin and adiponectin in insulin resistance. Clin Chim Acta, 417, 80-84. doi:10.1016/j.cca.2012.12.007
Yilmaz, M. I., Sonmez, A., Caglar, K., Gok, D. E., Eyileten, T., Yenicesu, M., . . . Vural, A. (2004). Peroxisome proliferator-activated receptor gamma (PPAR-gamma) agonist increases plasma adiponectin levels in type 2 diabetic patients with proteinuria. Endocrine, 25(3), 207-214. doi:10.1385/ENDO:25:3:207
Yuan, G., Chen, X., Ma, Q., Qiao, J., Li, R., Li, X., . . . Chen, M. (2007). C-reactive protein inhibits adiponectin gene expression and secretion in 3T3-L1 adipocytes. J Endocrinol, 194(2), 275-281. doi:10.1677/JOE-07-0133
Zhou, L., Park, S. Y., Xu, L., Xia, X., Ye, J., Su, L., . . . Li, P. (2015). Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun, 6, 5949. doi:10.1038/ncomms6949
Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., . . . Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 13(12), 4279-4295. doi:10.1091/mbc.E02-02-0105

(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *