帳號:guest(3.149.237.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林思吟
作者(英文):Si-Yin Lin
論文名稱:TSCA-001保護浦肯野細胞的完整性並藉由增強自噬機制以降解第三型脊髓小腦運動共濟失調症毒性蛋白質堆積
論文名稱(英文):TSCA-001 protects the integrity of Purkinje cell via enhancing autophagy to eliminate the aggregation of ATXN3 in SCA3
指導教授:邱紫文
指導教授(英文):Tzyy-Wen Chiou
口試委員:袁大鈞
韓鴻志
口試委員(英文):Ta-Chun Yuan
Horng-Jyh Harn
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610613006
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:78
關鍵詞:自噬路徑毒性片段脊髓小腦共濟失調症第三型浦肯野細胞
關鍵詞(英文):ATXN3autophagymTORPolyQPI3K-AKTPurkinje cellSpinocerebellar ataxia type 3toxic fragments
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
脊髓小腦共濟失調症第三型(Spinocerebellar ataxia ,簡稱 SCA3),為罕見顯性遺傳神經退化性疾病,主因為突變的 ataxin 3 蛋白(ATXN3)形成不可被降解的聚麩胺醯酸(polyQ)片段,此片段堆疊後具毒性並異常積累於小腦,使得神經元凋亡,最後導致人體肌肉不協調並呼吸衰竭而死亡。全世界的SCA患者超過半數為第三型,現無任何有效的治癒方法,僅能利用物理方式或少數藥物減緩疾病之惡化。目前藥物開發之策略主要為保護神經元或減少異常聚集之毒性片段。本研究利用 SCA3 動物及細胞模型探討 TSCA-001 藥物將毒性片段清除之機制,以了解延緩疾病惡化與改善 SCA3 之原因。在SCA3小鼠發病後口服TSCA-001藥物5週 (每天 2 次 ),透過旋轉棒性能測試和步態分析,發現SCA3 小鼠運動協調行為有顯著的改善。此外,利用共軛焦顯微鏡與免疫螢光染色分析SCA3 小鼠之小腦,發現 TSCA-001 可維持小腦內浦肯野細胞的樹突和完整性,以及減少毒性片段蛋白質-突變 ATXN3 和 polyQ 的異常堆積現象;西方點墨法結果指出,TSCA-001增強浦肯野細胞之自噬途徑標的蛋白質[ beclin 1(BECN1)與 light-chain-3B-II(LC3B-II)],並減少毒性片段的堆積。另一方面,在 HEK-293GFP-ATXN3-84Q 中,亦可證實與再現TSCA-001 通過增強自噬路徑,即提升基因 autophagy-associated protein 3 (ATG3)、 ATG7 和標的蛋白質 BECN1 與 LC3B 之表現,使毒性堆積蛋白因此減少。我為了更深入分析 TSCA-001於自噬路徑中作用時機與機制,故使用抑制劑 wortmannin 與 bafA1 剖析自噬途徑的階段性。在西方點墨法分析,發現兩種抑制劑於有效活性期間阻斷了 TSCA-001 在自噬路徑之初始階段活化能力,因此毒性堆積蛋白無法被分解且持續累積。綜上所述,本研究發現 TSCA-001 活化自噬路徑之上游 mTOR/ PI3K-AKT 訊息,促進自噬路徑以清除 polyQ 堆積,使 Purkinje cell 死亡減少,進而顯著改善了 SCA3 小鼠之運動協調性,故 TSCA-001 作為治療 SCA3 極具潛力。
Spinocerebellar ataxia type 3 (SCA3), a rare hereditary neurodegenerative disease, is profoundly attributed to the abnormal accumulation of undegradable polyglutamine (polyQ), which is encoded by mutated ataxin 3 gene (ATXN3). The toxic fragments processed from mutant ATXN3 can induce the death in neurons and it leads to the muscular incoordination of the human body. Some treatment strategies of SCA3 are preferentially focusing on ameliorating the neurons or depleting the abnormal aggregates. In this study, I report that TSCA-001 could protect the dendrites of Purkinje cells from fragmentation and promote the elimination of toxic aggregates to ameliorate the motor deficits in vivo. During the treatment in vivo, the behaviors of SCA3 mice exhibited significant improvements, as measured by the rotarod performance test and footprint pattern analysis. The representative confocal microscopic images and Western blotting analysis of the SCA3 cerebellum suggested that TSCA-001 could not only maintain the dendrites and integrity of Purkinje cells, but also enhance the autophagy-associated protein, beclin 1 (BECN1) and light-chain-3B-II (LC3B-II), to remove the mutant ATXN3 and polyQ. On the other hand, in HEK293GFP-ATXN3-84Q, TSCA-001 depleted the aggregates by enhancing the autophagy-related players, i.e. autophagy-related protein 3 (ATG3), ATG7, and both the gene and protein expression of BECN1 and LC3B-II. To reveal the crucial role of TSCA-001, I applied two autophagy inhibitors for dissecting each stage of the autophagic pathway. The Western blotting analysis indicated the wortmannin and bafA1 blocked the effect of TSCA-001 on the initial phase of autophagy. To sum up, this study uncovers the role of TSCA-001 in the upstream of autophagy, mTOR/PI3K-AKT signaling, and this can be a promising therapy for SCA3.
Acknowledgements III
摘要 V
Abstract VII
Table of Contents IX
List of figures XII
List of tables XIV
Abbreviations 1
1. Introduction 3
1.1 Spinocerebellar ataxia (SCA) 3
1.2 Spinocerebellar ataxia type 3 (SCA3) 3
1.2.1 Cerebellum 4
1.2.2 Purkinje cells 5
1.2.3 ATXN3 6
1.2.4 Toxic fragment 7
1.2.5 Treatments for SCA3 8
1.3 Protein degradation 9
1.3.1 Proteasome pathway 11
1.3.2 Autophagy 12
1.3.2.1 Initiation 12
1.3.2.2 Nucleation 13
1.3.2.3 Elongation 13
1.3.2.4 Maturation 13
1.4 TSCA-001 15
2. Aims 17
3. Materials and Methods 19
3.1 Experimental process design 19
3.1.1 In vivo 19
3.1.2 In vitro 20
3.2 In vivo experiments. 20
3.2.1 Animals and treatments 20
3.2.2 Behaviour assays 21
3.2.2.1 Rotarod performance 21
3.2.2.2 Footprint pattern 22
3.3 Immunofluorescence (IF) staining 22
3.4 Western blotting analysis 23
3.4.1 Protein isolation and quantification 23
3.4.2 SDS-PAGE analysis 23
3.5 In vitro experiments. 25
3.5.1 Cell culture 25
3.5.2 Cell treatments 25
3.6 Preparation of quantitative real-time PCR 26
3.6.1 RNA isolation and quantification 26
3.6.2 Reverse-transcription PCR 26
3.6.3 Quantitative Real-time PCR 26
3.7 Statistical analysis 27
4. Results 29
4.1 TSCA-001 largely improves motor incoordination in SCA3 mice. 29
4.2 TSCA-001 ameliorates neuropathology in SCA3 mice through the neuroprotection of Purkinje cell’s integrity and the decreases of toxic fragments in the cerebellum. 30
4.3 TSCA-001 treatment activates autophagy to eliminate toxic aggregates in vivo and in vitro. 31
4.4 TSCA-001 modulates the autophagic pathway in the initiation phase. 32
4.5 TSCA-001 regulates the upstream signaling of autophagy. 33
5. Discussion 50
6. Conclusion 52
7. Reference 53

Adams, J. (2004). The proteasome: a suitable antineoplastic target. Nature Reviews. Cancer, 4(5), 349.
Alves, S., Cormier-Dequaire, F., Marinello, M., Marais, T., Muriel, M.-P., Beaumatin, F., . . . El Hachimi, K. (2014). The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathologica, 128(5), 705-722.
Ashkenazi, A., Bento, C. F., Ricketts, T., Vicinanza, M., Siddiqi, F., Pavel, M., . . . Menzies, F. M. (2017). Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature, 545(7652), 108-111.
Baldarçara, L., Currie, S., Hadjivassiliou, M., Hoggard, N., Jack, A., Jackowski, A. P., . . . Righini, A. (2015). Consensus paper: radiological biomarkers of cerebellar diseases. The Cerebellum, 14(2), 175-196.
Barski, J. J., Hartmann, J., Rose, C. R., Hoebeek, F., Mörl, K., Noll-Hussong, M., . . . Meyer, M. (2003). Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. Journal of Neuroscience, 23(8), 3469-3477.
Bauer, P. O., & Nukina, N. (2009). The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. Journal of Neurochemistry, 110(6), 1737-1765.
Bento, C. F., Renna, M., Ghislat, G., Puri, C., Ashkenazi, A., Vicinanza, M., . . . Rubinsztein, D. C. (2016). Mammalian autophagy: how does it work? Annual Review of Biochemistry, 85, 685-713.
Burnett, B., Li, F., & Pittman, R. N. (2003). The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Human Molecular Genetics, 12(23), 3195-3205.
Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: nodes in an integrated network. Nature Reviews Neuroscience, 1.
Callis, J., & Vierstra, R. D. (2000). Protein degradation in signaling. Current Opinion in Plant Biology, 3(5), 381-386.
Carlson, K. M., Andresen, J. M., & Orr, H. T. (2009). Emerging pathogenic pathways in the spinocerebellar ataxias. Current Opinion in Genetics & Development, 19(3), 247-253.
Cemal, C. K., Carroll, C. J., Lawrence, L., Lowrie, M. B., Ruddle, P., Al-Mahdawi, S., Chamberlain, S. (2002). YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Human Molecular Genetics, 11(9), 1075-1094.
Chang, Y.-K., Chen, M.-H., Chiang, Y.-H., Chen, Y.-F., Ma, W.-H., Tseng, C.-Y., . . . Lee, O. K. (2011). Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. Journal of Biomedical Science, 18(1), 54.
Chen, I.-C., Chang, C.-N., Chen, W.-L., Lin, T.-H., Chao, C.-Y., Lin, C.-H., . . . Lin, J.-Y. (2019). Targeting Ubiquitin Proteasome Pathway with Traditional Chinese Medicine for Treatment of Spinocerebellar Ataxia Type 3. The American Journal of Chinese Medicine, 47(01), 63-95.
Chen, X., Wu, J., Lvovskaya, S., Herndon, E., Supnet, C., & Bezprozvanny, I. (2011). Dantrolene is neuroprotective in Huntington's disease transgenic mouse model. Molecular Neurodegeneration, 6(1), 81.
Cunha-Santos, J., Duarte-Neves, J., Carmona, V., Guarente, L., De Almeida, L. P., & Cavadas, C. (2016). Caloric restriction blocks neuropathology and motor deficits in Machado–Joseph disease mouse models through SIRT1 pathway. Nature Communications, 7, 11445.
Chung, M. y., Lu, Y. C., Cheng, N. C., & Soong, B. W. (2003). A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21‐q23. Brain, 126(6), 1293-1299.
Coutinho, P., & Andrade, C. (1978). Autosomal dominant system degeneration in Portuguese families of the Azores Islands: a new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology, 28(7), 703-703.
D'Abreu, A., Franca, M. C., Jr., Paulson, H. L., & Lopes-Cendes, I. (2010). Caring for Machado-Joseph disease: current understanding and how to help patients. Parkinsonism Relat Disord, 16(1), 2-7.
Durcan, T. M., & Fon, E. A. (2013). Ataxin-3 and its E3 partners: implications for Machado–Joseph disease. Frontiers in Neurology, 4, 46.
Durr, A. (2010). Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. The Lancet Neurology, 9(9), 885-894.
Duenas, A. M., Goold, R., & Giunti, P. (2006). Molecular pathogenesis of spinocerebellar ataxias. Brain, 129(6), 1357-1370.
Ebrahimi-Fakhari, D., Cantuti-Castelvetri, I., Fan, Z., Rockenstein, E., Masliah, E., Hyman, B. T., . . . Unni, V. K. (2011). Distinct roles in vivo for the ubiquitin–proteasome system and the autophagy–lysosomal pathway in the degradation of α-synuclein. Journal of Neuroscience, 31(41), 14508-14520.
El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., . . . Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell, 75(4), 817-825.
Fan, H.-C., Ho, L.-I., Chi, C.-S., Chen, S.-J., Peng, G.-S., Chan, T.-M., . . . Harn, H.-J. (2014). Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplantation, 23(4-5), 441-458.
Fujishima, K., Galbraith, K. K., & Kengaku, M. (2018). Dendritic self-avoidance and morphological development of cerebellar Purkinje cells. The Cerebellum, 17(6), 701-708.
Gao, R., Liu, Y., Silva-Fernandes, A., Fang, X., Paulucci-Holthauzen, A., Chatterjee, A., . . . Ashizawa, T. (2015). Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genetics, 11(1), e1004834.
Gimenez, U., Boulan, B., Mauconduit, F., Taurel, F., Leclercq, M., Denarier, E., . . . Lahrech, H. (2017). 3D imaging of the brain morphology and connectivity defects in a model of psychiatric disorders: MAP6-KO mice. Scientific Reports, 7(1), 10308.
Haacke, A., Broadley, S. A., Boteva, R., Tzvetkov, N., Hartl, F. U., & Breuer, P. (2006). Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Human Molecular Genetics, 15(4), 555-568.
Haacke, A., Hartl, F. U., & Breuer, P. (2007). Calpain inhibition is sufficient to suppress aggregation of polyglutamine-expanded ataxin-3. Journal of Biological Chemistry, 282(26), 18851-18856.
Hadjivassiliou, M., Grunewald, R. A., Chattopadhyay, A. K., Davies-Jones, G. A., Gibson, A., Jarratt, J. A., . . . Smith, C. M. (1998). Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet, 352(9140), 1582-1585.
Helwig, M., Hoshino, A., Berridge, C., Lee, S. N., Lorenzen, N., Otzen, D. E., . . . Lindberg, I. (2013). The Neuroendocrine Protein 7B2 Suppresses the Aggregation of Neurodegenerative Disease-related Proteins. J Biol Chem, 288(2), 1114-1124.
Hewitt, G., Carroll, B., & Korolchuk, V. I. (2015). Mechanisms of Cross-talk between Intracellular Protein Degradation Pathways. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging (pp. 103-119): Elsevier.
Hsueh, K. W., Chiou, T. W., Chiang, S. F., Yamashita, T., Abe, K., Borlongan, C. V., . . . Harn, H. J. (2016). Autophagic down-regulation in motor neurons remarkably prolongs the survival of ALS mice. Neuropharmacology, 108, 152-160.
Hughes, R., Magee, E., & Bingham, S. (2000). Protein degradation in the large intestine: relevance to colorectal cancer. Current Issues in Intestinal Microbiology, 1(2), 51-58.
Hübener, J., Weber, J. J., Richter, C., Honold, L., Weiss, A., Murad, F., . . . Paquet-Durand, F. (2012). Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Human Molecular Genetics, 22(3), 508-518.
Ishida, Y., Kawakami, H., Kitajima, H., Nishiyama, A., Sasai, Y., Inoue, H., & Muguruma, K. (2016). Vulnerability of Purkinje cells generated from spinocerebellar ataxia type 6 patient-derived iPSCs. Cell Reports, 17(6), 1482-1490.
Issa, F. A., Mazzochi, C., Mock, A. F., & Papazian, D. M. (2011). Spinocerebellar ataxia type 13 mutant potassium channel alters neuronal excitability and causes locomotor deficits in zebrafish. J Neurosci, 31(18), 6831-6841.
Jegga, A. G., Schneider, L., Ouyang, X., & Zhang, J. (2011). Systems biology of the autophagy-lysosomal pathway. Autophagy, 7(5), 477-489.
Kapfhammer, J. P. (2004). Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Progress in Histochemistry and Cytochemistry, 39(3), 131-182.
Kim, A. Y., Park, Y. J., Pan, X., Shin, K. C., Kwak, S. H., Bassas, A. F., Kim, J. B. (2015). Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun, 6, 7585.
Klockgether, T., Mariotti, C., & Paulson, H. L. (2019). Spinocerebellar ataxia. Nature Reviews Disease Primers, 5(1), 24.
Koch, P., Breuer, P., Peitz, M., Jungverdorben, J., Kesavan, J., Poppe, D., . . . Tüting, T. (2011). Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature, 480(7378), 543-546.
Koukourakis, M. I., Kalamida, D., Giatromanolaki, A., Zois, C. E., Sivridis, E., Pouliliou, S., . . . Harris, A. L. (2015). Autophagosome proteins LC3A, LC3B and LC3C have distinct subcellular distribution kinetics and expression in cancer cell lines. PLoS One, 10(9), e0137675.
Kuang, X., Zhou, H.-J., Thorne, A. H., Chen, X.-N., Li, L.-J., & Du, J.-R. (2017). Neuroprotective Effect of Ligustilide through Induction of α-Secretase Processing of Both APP and Klotho in a Mouse Model of Alzheimer’s Disease. Frontiers in Aging Neuroscience, 9, 353.
Li, T., Liu, Y., Yu, L., Lao, J., Zhang, M., Jin, J., . . . Xu, Y. (2018). Human Umbilical Cord Mesenchymal Stem Cells Protect Against SCA3 by Modulating the Level of 70 kD Heat Shock Protein. Cellular and Molecular Neurobiology, 38(3), 641-655.
Li, X., Liu, H., Fischhaber, P. L., & Tang, T.-S. (2015). Toward therapeutic targets for SCA3: Insight into the role of Machado–Joseph disease protein ataxin-3 in misfolded proteins clearance. Progress in Neurobiology, 132, 34-58.
Lima, L., & Coutinho, P. (1980). Clinical criteria for diagnosis of Machado‐Joseph disease Report of a non‐Azorean Portuguese family. Neurology, 30(3), 319-319.
Liu, J., Tang, T.-S., Tu, H., Nelson, O., Herndon, E., Huynh, D. P., . . . Bezprozvanny, I. (2009). Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. Journal of Neuroscience, 29(29), 9148-9162.
Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., . . . Liu, H. F. (2016). p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cellular & Molecular Biology Letters, 21(1), 29.
Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., . . . Davies, S. W. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3), 493-506.
Matilla-Duenas, A., Corral-Juan, M., Volpini, V., & Sanchez, I. (2012). The spinocerebellar ataxias: clinical aspects and molecular genetics. Adv Exp Med Biol, 724, 351-374.
Matos, C. A., de Macedo-Ribeiro, S., & Carvalho, A. L. (2011). Polyglutamine diseases: the special case of ataxin-3 and Machado-Joseph disease. Prog Neurobiol, 95(1), 26-48.
Moore, L. R., Keller, L., Bushart, D. D., Delatorre, R., Li, D., McLoughlin, H. S., . . . Paulson, H. L. (2019). Antisense oligonucleotide therapy rescues aggresome formation in a novel Spinocerebellar Ataxia type 3 human embryonic stem cell line. BioRxiv, 681650.
Musiwaro, P., Smith, M., Manifava, M., Walker, S. A., & Ktistakis, N. T. (2013). Characteristics and requirements of basal autophagy in HEK 293 cells. Autophagy, 9(9), 1407-1417.
Myung, J., Kim, K. B., & Crews, C. M. (2001). The ubiquitin-proteasome pathway and proteasome inhibitors. Medicinal Research Reviews, 21(4), 245-273.
Nascimento-Ferreira, I., Nobrega, C., Vasconcelos-Ferreira, A., Onofre, I., Albuquerque, D., Aveleira, C., . . . Pereira de Almeida, L. (2013). Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado–Joseph disease. Brain, 136(7), 2173-2188.
Nguyen, H. P., Hübener, J., Weber, J. J., Grueninger, S., Riess, O., & Weiss, A. (2013). Cerebellar soluble mutant ataxin-3 level decreases during disease progression in Spinocerebellar Ataxia Type 3 mice. PLoS One, 8(4), e62043.
Onofre, I., Mendonça, N., Lopes, S., Nobre, R., De Melo, J. B., Carreira, I. M., . . . De Almeida, L. P. (2016). Fibroblasts of Machado Joseph Disease patients reveal autophagy impairment. Scientific Reports, 6, 28220.
Orr, H. T. (2012). Cell biology of spinocerebellar ataxia. J Cell Biol, 197(2), 167-177.
Paulson, H. L. (2009). The spinocerebellar ataxias. Journal of neuro-ophthalmology: the Official Journal of the North American Neuro-Ophthalmology Society, 29(3), 227.
Rajamani, K., Liu, J.-W., Wu, C.-H., Chiang, I.-T., You, D.-H., Lin, S.-Y., . . . Chiou, T.-W. (2017). n-Butilydenephthalide exhibits protection against neurotoxicity through regulation of tryptophan 2, 3 dioxygenase in spinocerebellar ataxia type 3. Neuropharmacology, 117, 434-446.
Reeber, S. L., White, J. J., George-Jones, N. A., & Sillitoe, R. V. (2013). Architecture and development of olivocerebellar circuit topography. Frontiers in Neural Circuits, 6, 115.
Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem, 78, 363-397.
Ross, C. A., & Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nat Med, 10 Suppl, S10-17.
Salman, M. S. (2018). Epidemiology of cerebellar diseases and therapeutic approaches. The Cerebellum, 17(1), 4-11.
Sasaki, H. (2007). [Clinical feature and molecular genetics of hereditary spinocerebellar ataxia]. Rinsho Shinkeigaku, 47(11), 795-800.
Sarna, J. R., & Hawkes, R. (2003). Patterned Purkinje cell death in the cerebellum. Progress in Neurobiology, 70(6), 473-507.
Schmitt, I., Linden, M., Khazneh, H., Evert, B. O., Breuer, P., Klockgether, T., & Wuellner, U. (2007). Inactivation of the mouse Atxn3 (ataxin-3) gene increases protein ubiquitination. Biochemical and Biophysical Research Communications, 362(3), 734-739.
Simões, A. T., Gonçalves, N., Koeppen, A., Déglon, N., Kügler, S., Duarte, C. B., & Pereira de Almeida, L. (2012). Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado–Joseph disease. Brain, 135(8), 2428-2439.
Soong, B.-w., & Paulson, H. L. (2007). Spinocerebellar ataxias: an update. Current Opinion in Neurology, 20(4), 438-446.
Sridharan, S., Jain, K., & Basu, A. (2011). Regulation of autophagy by kinases. Cancers, 3(2), 2630-2654.
Stoodley, C. J., & Schmahmann, J. D. (2018). Functional topography of the human cerebellum. Handbook of Clinical Neurology, 154, 59-70.
Trott, A., & J Houenou, L. (2012). Mini-review: spinocerebellar ataxias: an update of SCA genes. Recent Patents on DNA & Gene Sequences, 6(2), 115-121.
Trottier, Y., Cancel, G., An-Gourfinkel, I., Lutz, Y., Weber, C., Brice, A., . . . Mandel, J.-L. (1998). Heterogeneous intracellular localization and expression of ataxin-3. Neurobiology of Disease, 5(5), 335-347.
Toonen, L. J., Rigo, F., van Attikum, H., & van Roon-Mom, W. M. (2017). Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice. Molecular Therapy-Nucleic Acids, 8, 232-242.
Tsapras, P., & Nezis, I. P. (2017a). Caspase involvement in autophagy. Cell Death and Differentiation, 24(8), 1369.
Tsapras, P., & Nezis, I. P. (2017b). Caspase involvement in autophagy. Cell Death & Differentiation.
Van Alfen, N., Sinke, R. J., Zwarts, M. J., Gabreëls‐Festen, A., Praamstra, P., Kremer, B. P., & Horstink, M. W. (2001). Intermediate CAG repeat lengths (53, 54) for MJD/SCA3 are associated with an abnormal phenotype. Annals of Neurology, 49(6), 805-808.
Wang, H. L., Hu, S. H., Chou, A. H., Wang, S. S., Weng, Y. H., & Yeh, T. H. (2013). H1152 promotes the degradation of polyglutamine-expanded ataxin-3 or ataxin-7 independently of its ROCK-inhibiting effect and ameliorates mutant ataxin-3-induced neurodegeneration in the SCA3 transgenic mouse. Neuropharmacology, 70C, 1-11.
Warrick, J. M., Morabito, L. M., Bilen, J., Gordesky-Gold, B., Faust, L. Z., Paulson, H. L., & Bonini, N. M. (2005). Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Molecular Cell, 18(1), 37-48.
Warrick, J. M., Paulson, H. L., Gray-Board, G. L., Bui, Q. T., Fischbeck, K. H., Pittman, R. N., & Bonini, N. M. (1998). Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell, 93(6), 939-949.
White, J. J., & Sillitoe, R. V. (2013). Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdisciplinary Reviews: Developmental Biology, 2(1), 149-164.
Xing, S., Zhang, Y., Li, J., Zhang, J., Li, Y., Dang, C., . . . Pei, Z. (2012). Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. Autophagy, 8(1), 63-76.
Yin, Z., Pascual, C., & Klionsky, D. J. (2016). Autophagy: machinery and regulation. Microbial Cell, 3(12), 588.
Yi, J., Zhang, L., Tang, B., Han, W., Zhou, Y., Chen, Z., . . . Jiang, H. (2013). Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. PLoS One, 8(1), e54792.
Zeng, L., Wang, B., Merillat, S. A., Minakawa, E. N., Perkins, M. D., Ramani, B., . . . Paulson, H. L. (2015). Differential recruitment of UBQLN2 to nuclear inclusions in the polyglutamine diseases HD and SCA3. Neurobiology of Disease, 82, 281-288.
Zesiewicz, T. A., Wilmot, G., Kuo, S.-H., Perlman, S., Greenstein, P. E., Ying, S. H., . . . Figueroa, K. (2018). Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology, 90(10), 464-471.

(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *