帳號:guest(3.12.154.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:賴麒元
作者(英文):Chi-Yuan Lai
論文名稱:退火對氧化鉍奈米粒子的結構、形貌及光學性質的影響
論文名稱(英文):Effect of annealing on the structure ,morphological and optical properties of Bismuth oxide nanoparticles
指導教授:吳勝允
指導教授(英文):Sheng-Yun Wu
口試委員:葉旺奇
陳孟炬
口試委員(英文):Wang-Chi Yeh
Meng-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610614007
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:68
關鍵詞:退火奈米氧化鉍光致發光奈米粒子
關鍵詞(英文):AnnealingBismuth oxidephotoluminescencenanoparticle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
奈米氧化鉍是用熱蒸鍍法將金屬鉍(99.999%)於1 Torr的環境下製成奈米鉍粉末,並將粉末放入高溫爐管退火製成,並分別從50°C到800°C於大氣壓下恆溫退火兩個小時。可以從外觀上看到粉末會有從黑色→亮黃色→淺黃色→深黃色的顏色變化,使用掃描式電子顯微鏡(FE-SEM)、X光繞射分析(XRD)和室溫的光致發光分析(PL)來探討退火對奈米氧化鉍的形貌、粒徑、晶體結構與光學性質的影響。FE-SEM的結果顯示奈米氧化鉍粒子的平均粒徑隨著退火溫度的上升而增加,粒子表面的形貌在退火溫度超過300°C時改變。XRD的結果顯示退火溫度在250°C時會轉變成純四方結構的β-Bi2O3,退火溫度在550°C時會轉變成純體心立方結構的γ- Bi2O3,退火溫度在700°C時會轉變成單斜結構的α- Bi2O3和三斜結構ω- Bi2O3,晶粒大小也隨著退火溫度上升而增加。室溫PL的結果顯示在He-Cd雷射(325nm)的激發下,在紫光、藍-綠光波段、黃-橘波段、紅光波段出現五個發射波峰,且紅光的強度占了大部分的發光強度,顯示出奈米氧化鉍的發光主要是鉍原子的間隙缺陷,隨著退火溫度上升,主峰值位置幾乎沒有變化,代表粒徑大小與晶格結構不會影響奈米氧化鉍主要的發光性質。
Bismuth nanoparticles were prepared by thermal evaporation method with purity 99.999% bismuth bulk. The as-prepared bismuth nanoparticles were annealed in air with high temperature tube furnace from 50°C to 800°C for two hours to obtain bismuth oxide nanoparticle. The color change can be seen from appearance of powder from black → bright yellow → pale yellow → red-brown. Using Scanning Electron Microscope (SEM)、X-Ray diffractometer (XRD) and room temperature Photoluminescence (PL) to analyze the effect of annealing on morphology、particle size、crystal structure and optical properties of bismuth oxide. The result of SEM show that the mean size of bismuth oxide nanoparticles increases with anneal temperature rise. The morphology of particles changes with anneal temperature above 300°C. The result of XRD shows that the crystal structure transform to pure tetragonal of β-Bi2O3 in anneal temperature 250°C, pure body-centered cubic γ- Bi2O3 in anneal temperature 550°C, monoclinic α- Bi2O3 and Triclinic ω- Bi2O3 in anneal temperature 700°C. The crystallite size increase with the anneal temperature rise. The result of room temperature PL shows that emission band is observed in Violet region (390-450nm)、blue-green region(490-580nm)、yellow-orange region ( 550-640nm ) and red region (650~800nm) under excited by He-Cd laser (325 nm). The intensity of red emission band occupied most of luminescence of bismuth oxide nanoparticle indicate that the existence of visible emission band can be attributed to the bismuth interstitials. The position of emission band of red region do not change also indicate that the change of grain size and crystal structure will not change the optical properties of bismuth oxide nanoparticles.
第一章 緒論 1
1-1 簡介 1
1-2 研究動機 1

第二章 基礎理論 3
2-1 退火 3
2-2 鉍的晶體結構與性質 4
2-3 氧化鉍的晶體結構與性質 5
2-4 氧化鉍的發光性質 7

第三章 樣品的製備 9
3-1 奈米鉍的製備 9
3-2 奈米氧化鉍的製備 11

第四章 實驗儀器介紹 13
4-1 掃描式電子顯微鏡(SEM) 13
4-2 X-射線繞射儀(XRD) 15
4-3 光致發光光譜儀(PL) 17

第五章 奈米氧化鉍之測量與分析 21
5-1 樣品表面形態與粒徑分析 21
5-2 不同退火溫度的晶體結構分析 30
5-2-1 GASA精算軟體晶體結構擬合分析 30
5-2-2 寬化效應與晶體粒徑尺寸(grain size)分析 44
5-3 光致發光(PL)光譜分析 48

第六章 結論 65

第七章 參考文獻 67
[1] Salazar-Pérez, A.J. & CAMACHO-LOPEZ, MIGUEL & Morales Luckie, Raul Alberto & Sanchez-Mendieta, Victor & Ureña-Nuñez, Fernando & Arenas-Alatorre, J. (2005). Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles. Superficies y Vacío. 18. 4-8.

[2] Michel Drache,*, Pascal Roussel, and, Jean-Pierre Wignacourt. Structures and Oxide Mobility in Bi−Ln−O Materials:  Heritage of Bi2O3, Chemical Reviews 2007,107: 80-96.

[3] Yi Wang, Yunling Li, Metastable γ-Bi2O3 tetrahedra: Phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch,Journal of Colloid and Interface Science,Volume 454,2015,Pages 238-244.

[4] Wenting Dong, Congshan Zhu,Optical properties of surface-modified Bi2O3 nanoparticles,Journal of Physics and Chemistry of Solids,Volume 64, Issue 2,2003,Pages 265-271.

[5] M. Vila, C. Díaz-Guerra, J. Piqueras,Luminescence and Raman study of α-Bi2O3 ceramics,Materials Chemistry and Physics,Volume 133, Issue 1,2012,Pages 559-564.

[6] Kumari, Latha & Lin, Jin-Han & Ma, Yuan-Ron. (2007). One-dimensional Bi2O3 nanohooks: Synthesis, characterization and optical properties. Journal of physics. Condensed matter : an Institute of Physics journal. 19. 406204. 10.1088/0953-8984/19/40/406204.

[7] Toby, B. H., & Von Dreele, R. B. (2013). "GSAS-II: the genesis of a modern open-source all purpose crystallography software package". Journal of Applied Crystallography, 46(2), 544-549

[8] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Structural and optical characteristics of bismuth oxide thin films, Surface Science, Volumes 507–510,2002, 480-485.

[9] Nicoleta Cornei, Nathalie Tancret, Francis Abraham, and Olivier Mentré*,New ε-Bi2O3 Metastable Polymorph, Inorganic Chemistry 2006 45 (13), 4886-4888.

[10] Gualtieri, A., Immovilli, S., & Prudenziati, M. (1997). Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3.
Powder Diffraction, 12(2), 90-92. doi:10.1017/S0885715600009490.

[11]鄭信民, 林麗娟, “X光繞射應用簡介”, 工業材料雜誌, (2002), P.108。

[12] WU Zhifu, SHI Yunfeng, WU Hankui, Hou Yue. Research Progress of Nanoscale Bismuth Oxide[J].Chinese Journal of applied chemistry,2014,12:1359-09.

[13]賴昱辰(2013)。氧化鉍奈米線合成鑑定及光觸媒應用。國立東華大學材料科學與工程學系碩士論文,花蓮縣。 取自https://hdl.handle.net/11296/t6wa4c
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *