帳號:guest(18.188.59.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:任明星
作者(英文):Ming-Hsing Jen
論文名稱:單晶二維奈米材料三碘化鉻合成及表面特徵
論文名稱(英文):Synthesis and characterization of single crystal 2D CrI3 nanomaterials
指導教授:馬遠榮
指導教授(英文):Yuan-Ron Ma
口試委員:劉鏞
賴建智
口試委員(英文):Yung Liou
Chien-Chih Lai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610614009
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:56
關鍵詞:三碘化鉻二維材料凡德瓦力鐵磁性磁晶異相性光致螢光
關鍵詞(英文):Chromium triiodideTwo-dimensional materialVan der WaalsFerromagneticMagnetic crystal heterogeneityPhotoluminescence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本實驗使用管型爐,進行水平定向凝固法,成功製備出單晶的三碘化鉻,接著我們分別針對樣品的外觀、化學組成、晶格結構、磁性量測、電性量測、光致螢光做了一系列的量測及探討,在外觀方面可以看到明顯的階梯狀結構,為二維材料的特徵,透過能量分散光譜儀及X光電子能譜儀,得知樣品由碘及鉻組成,且分布均勻,X光繞射儀說明了其為三方晶系,接著使用超導量子干涉儀量測樣品磁性,其為鐵磁性並具有磁晶異相性,磁相變溫度為~61 K,在環境溫度為2K、c軸與外加場平行時,矯頑力達0.265 Oe,而I-V變溫電性量測,則說明樣品電性特徵傾向於半導體,最後變溫量測了光致螢光,推算樣品能隙為1.37 eV,溫度改變時其特徵峰位置並無改變,說明樣品對於溫度有穩定性的。
The horizontal directional solidification method (HDSM) was used to synthesize flakes of single crystal two-dimensional (2D) CrI3 layers. Furthermore, we studied the morphological, structural, electronic, chemical, magnetic, and electronic properties of the single crystal 2D CrI3 layers. Morphologically we clearly see the stacks of step-like layers of CrI3. The crystal structure of the 2D CrI3 layers found to be a trigonal system. The chemical composition of 2D CrI3 layers is confirmed using energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Photoluminescence (PL) spectroscopy show the enhancement of the PL intensity with the incident laser power and reducing temperature. Using PL spectroscopy, the band gap of the 2D CrI3 layers determined to be 1.37 eV. The magnetic studied show the ferromagnetic anisotropy of CrI3 where c-axis is perpendicular to the plane of 2D layers. The critical temperature of the magnetic phase change is found to be of ~61 K. The current-voltage properties at various temperature reveals the semiconductor nature of the CrI3 layers.
第一章 導論與文獻回顧 1
第二章 實驗流程及製備儀器 17
第三章 分析儀器 23
第四章 結果與討論 33
第五章 結論 49
[1] Kim, H. G., Lee, H. B. R., Atomic layer deposition on 2D materials, Chem. Mater. 29, 3809-3826 (2017).
[2] Liu, S. M., Yang, Y., Sato, S., Kimura, K., Enhanced photoluminescence from Si nano-organosols by functionalization with alkenes and their size evolution, Chem. Mater. 18, 637-642 (2006).
[3] Heulings, H. I., Huang, X., Li, J., Yuen, T., Lin, C. L., Mn-substituted inorganic-organic hybrid materials based on ZnSe: Nanostructures that may lead to magnetic semiconductors with a strong quantum confinement effect, Nano Lett. 1, 521-526 (2001).
[4] Son, Y., Park, M., Son, Y., Lee, J. S., Jang, J. H., Kim, Y., Cho, J., Quantum confinement and its related effects on the critical size of GeO2 nanoparticles anodes for lithium batteries, Nano Lett. 14, 1005-1010 (2014).
[5] Wolf, O., Dasog, M., Yang, Z., Balberg, I., Veinot, J. G. C., Millo, O., Doping and quantum confinement effects in single Si nanocrystals observed by scanning tunneling spectroscopy, Nano Lett. 13, 2516-2521 (2013).
[6] 馬遠榮,奈米科技,城邦文化,台北,2002年。
[7] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Firsov, A. A., Electric field effect in atomically thin carbon films, Science 306, 666-669 (2004).
[8] Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M. I., Grigorieva, I., Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438, 197 (2005).
[9] Z Zhang, Y., Tan, Y. W., Stormer, H. L., Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature 438, 201 (2005).
[10] Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F., Atomically thin MoS 2: a new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010).
[11] Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Zhang, Y., Black phosphorus field-effect transistors, Nat. Nanotech. 9, 372 (2014).
[12] Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., Johnston-Halperin, E, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7, 2898-2926 (2013).
[13] Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials, Chem. Rev. 113, 3766-3798 (2013).
[14] Gregory, N. W., Lyman L. Handy, S. Young Tyree Jr, Chromium (III) Iodide, Inorg. Synth. 5 ,128-130 (1957).
[15] Handy, L. L., Gregory, N. W., Structural Properties of Chromium (III) Iodide and Some Chromium (III) Mixed Halides, J. Am. Chem. Soc. 74, 891-893 (1952).
[16] Morosin, B., Narath, A., X‐Ray Diffraction and Nuclear Quadrupole Resonance Studies of Chromium Trichloride, J. Chem. Phys. 40, 1958-1967 (1964).
[17] Pollini, I., Electron correlations and hybridization in chromium compounds, Solid State Commun. 106, 549-554. (1998).
[18] Matsukura, F., Tokura, Y., Ohno, H., Control of magnetism by electric fields, Nat. Nanotech. 10, 209 (2015).
[19] McGuire, M. A., Dixit, H., Cooper, V. R., Sales, B. C., Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27, 612-620 (2015).
[20] Shcherbakov, D., Stepanov, P., Weber, D., Wang, Y., Hu, J., Zhu, Y., Goldberger, J., Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide, Nano Lett. 18, 4214-4219 (2018).
[21] Wang, Z., Gutiérrez-Lezama, I., Ubrig, N., Kroner, M., Gibertini, M., Taniguchi, T., Morpurgo, A. F., Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3, Nat. Commun. 9, 2516 (2018).
[22] Song, T., Cai, X., Tu, M. W. Y., Zhang, X., Huang, B., Wilson, N. P., McGuire, M. A., Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science 360, 1214-1218 (2018).
[23] Liu, J., Sun, Q., Kawazoe, Y., Jena, P., Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers, Phys. Chem. Chem. Phys. 18, 8777-8784 (2016).
[24] Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., De Heer, W. A., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108, 19912-19916 (2004).
[25] Olsen, T., Assessing the performance of the random phase approximation for exchange and superexchange coupling constants in magnetic crystalline solids, Phys. Rev. B 96, 125143 (2017).
[26] Cullity, B. D., Introduction to Magnetic Materials, Addison-Wesley, U.S.A. (1972)
[27] Griffiths, D. J., Introduction to Electrodynamics, Prentice Hall, Englewood Cliffs (1981).
[28] Jiles, D., Introduction to magnetism and magnetic materials, CRC Press, U.S.A. (2015).
[29] Cheng, D. K., Field and wave electromagnetics. Pearson Education, India (1989).
[30] 王坤池,超高真空中在 Ge (111) 面上成長Co超薄膜之退火效應及磁性現象研究,國立台灣科技大學,台北,2001年。
[31] Stanciu, C. D., Kimel, A. V., Hansteen, F., Tsukamoto, A., Itoh, A., Kirilyuk, A., Rasing, T., Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation, Phys. Rev. B 73, 220402 (2006).
[32] Liu, C., Rondinone, A. J., Zhang, Z. J., Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties, Pure Appl. Chem. 72, 37-45 (2000).
[33] 孫嘉鴻、黃滿芳,半導體與發光原理,科學研習,第53卷5期,2-7頁,2014年。
[34] 陳仕鴻、李其駿、鄭秋平,三五族材料與電子元件簡介,奈米通訊,第24卷4期,37-43頁,2017年。
[35] 蕭盛鴻,氧化鋅奈米分層結構之光致螢光,國立東華大學,花蓮,2016年。

[36] Akasaki, I., Amano, H., Kito, M., Hiramatsu, K., Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN pn junction LED, J. Lumin. 48, 666-670 (1991).
[37] Bridgman, P. W., Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin, Proc. Am. Acad. Arts Sci. 60, 305-383 (1925).
[38] 鄭信民、林麗娟,場發射掃描式電子顯微鏡分析技術應用簡介,工業材料雜誌,第201期,109頁,2003年。
[39] 林智仁、羅聖全,場發射穿透式電子顯微鏡簡介,工業材料雜誌,90-98頁,2003年。
[40] 林麗娟,X光繞射原理及其應用,工業材料,第86期,100頁,1994年。
[41] Seah, M. P., Dench, W. A., Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2-11. (1979).
[42] 張立信,表面化學分析技術,奈米通訊,第19卷4期,17-23頁,2012年。
[43] Quantum Design, Inc., Magnetic property measurement system hardware reference manual, Quantum Design, San Diego, CA, 8 (1996)
[44] 張俊彥、施敏,半導體物理與製作技術,高立,40-44頁,1996年。
[45] 謝嘉民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理、架構及應用,科儀新知,第26卷6期,39-51頁,2005年。
[46] Lee, C., Wei, X., Kysar, J. W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science. 321, 385-388 (2008).
[47] Liu, X., Ha, S. T., Zhang, Q., de la Mata, M., Magen, C., Arbiol, J., Xiong, Q., Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals, ACS Nano 9, 687-695 (2015).
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *