帳號:guest(18.227.89.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李權原
作者(英文):Quan-Yuan Li
論文名稱:突變種S238A對離胺酸5,6胺基異位酶的催化反應機制影響
論文名稱(英文):The effect of catalytic reaction between lysine 5, 6 aminomutase and mutant S238A
指導教授:柯學初
指導教授(英文):Shyue-Chu Ke
口試委員:彭國証
胡焯淳
口試委員(英文):Kou-Cheng Peng
Cho-Chun Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610614013
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:74
關鍵詞:突變種S238A離胺酸5,6胺基異位脢磷酸吡哆醛腺核苷鈷胺素
關鍵詞(英文):Mutant S238ALysine 5, 6 aminomutasePLPAdenosylcobalaminAdoCblPyridoxal phosphate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
在離胺酸5,6胺基異位脢(Lysine 5,6-Aminomutase;5,6-LAM)的假設反應機制中,並未能藉由自然受質D-lysine,直接證實其反應機制是透過自由基來完成催化反應,因其生命週期極為短暫。透過理論計算得知,PLP的親電性會影響中間產物自由基(I•)的穩定度,其中部分質子化的PLP, I•的能量為17.6 KJ/mol,而未質子化的PLP, I•的能量則為21.6 KJ/mol,I•的提升能使D-lysine的受質自由基累積,並有機會透過EPR觀測。
5,6-LAM中,PLP吡啶的1號氮(pyridine-N1)會與Ser238α以氫鍵交互作用連結,因serine為弱酸,會向pyridine-N1提供質子,使PLP部分質子化,因此欲藉由1-deaza-PLP及突變種S238A與5,6-LAM進行實驗上的比對,觀察PLP親電性對於5,6-LAM影響為何,並驗證理論計算的結果,然而1-deaza-PLP合成尚未完成,因此僅利用S238A與5,6-LAM進行實驗。
根據實驗結果顯示,突變種S238A與5,6-LAM的自由基耦合及精細結構交互作用,位置相互吻合,證實結構並無改變,而S238A仍無法順利捕捉D-lysine的受質自由基訊號,HPLC數據顯示S238A催化速率下降4.7倍,Transaldimination的速率為WT較快,推斷受質較易與質子化程度較高的PLP鍵結,Homolysis及Ado•於受質5號碳抓氫等過程,也受突變種S238A影響。
Since D-lysine’s lifetime is really short, we couldn’t understand the mechanism of lysine 5, 6-aminomutase (5, 6-LAM) by observing the D-lysine directly. However, the DFT shows that the electrophilicity of PLP will affect the stability of intermediate radical(〖 I〗^•), the energy of intermediate for partial protonated PLP is 17.6 KJ/mol and for unprotonated PLP is 21.6 KJ/mol, By raising the energy of〖 I〗^•, it will increase the possibility to observe the EPR signal

In 5, 6-LAM, PLP is partially protonated because pyridine-N1 of PLP accept a hydrogen bond from Ser238, serine, even as an acid, will donate a proton to pyridine. We want to know that, first, the effect in 5, 6-LAM with electrophilicity of PLP, and second, to prove that DFT is true by comparing 1-deaza-PLP’s and mutant S238A’s reaction with 5, 6-LAM. However, the synthesis of 1-deaza-PLP hasn’t been completed, therefore we only see the comparison between 5, 6-LAM and mutant S238A.

The experiment’s result shows that the EPR spectra of 5, 6-LAM and S238A are really similar, which means that 5, 6-LAM and S238A have same structure, and still do not observe the signal of substrate radical by S238A. S238A resulted a 4.7-fold decrease in catalytic efficiency, and the rate of transaldimination was slower than 5, 6-LAM, indicating that substrate easy bond with higher protonated PLP, also affected the process include rate of homolysis and〖 Ado〗^• abstracting a hydrogen atom from the C5 of substrate-PLP complex.
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的與方法 2
第2章 文獻回顧 5
2.1 蛋白質簡介 5
2.2 酶簡介 5
2.2.1 輔酶 6
2.2.2 輔酶B_12─腺核苷鈷胺素 6
2.2.3 輔酶B_6─磷酸吡哆醛 8
2.3 離胺酸5,6胺基異位酶 10
2.3.1 5,6-LAM之結構 11
2.3.2 5,6-LAM之反應機制 12
2.3.3 5,6-LAM自由基中間體 13
2.3.4 5,6-LAM之磁場效應 16
2.3.5 5,6-LAM自殺效應 16
2.4 酵素動力學 17
2.4.1 Michaelis-Menten動力學模型 17
2.4.2 Lineweaver-Burk Plot 18
2.4.3 抑制作用 18
第3章 實驗儀器及原理 21
3.1 層析法 21
3.1.1 快速液相層析儀(FPLC) 21
3.1.2 陰離子交換層析 22
3.1.3 薄層層析法(TLC) 24
3.1.4 高效液相層析儀(HPLC) 24
3.2 電泳膠片分析法 25
3.3 紫外光-可見光分光光度法 27
3.4 停流反應光譜儀 28
3.5 電子順磁共振儀 30
3.5.1 離曼效應 31
3.5.2 精細結構交互作用與超精細分裂 32
3.5.3 朗德g因子 34
第4章 材料與方法 35
4.1 養菌 35
4.2 破菌 36
4.3 純化 37
4.4 TLC活性檢測 38
4.5 SDS-PAGE 分析 39
4.6 濃縮 40
4.7 酵素動力學參數測定 41
4.8 EPR測量 44
4.9 Stopped-Flow 46
第5章 結果與討論 47
5.1 純化 47
5.2 EPR光譜分析 50
5.2.1 瞬態自由基EPR訊號 50
5.2.2 穩定態自由基EPR訊號 51
5.2.3 低溫捕捉D-lysine受質自由基 52
5.2.4 Freeze Quench捕捉D-lysine受質自由基 53
5.3 HPLC酵素動力學參數實驗 54
5.4 停流反應光譜儀 60
5.4.1 Suicide Inactivation 60
5.4.2 Transaldimination 63
5.4.3 Homolysis 67
結論 69
參考文獻 71

1. Maity, A. N., Hsieh, C.-P., Huang, M.-H., Chen, Y.-H., Tang, K.-H., Behshad, E., . . . Ke, S.-C. (2009). Evidence for Conformational Movement and Radical Mechanism in the Reaction of 4-Thia-l-lysine with Lysine 5,6-Aminomutase. The Journal of Physical Chemistry B, 113(36), 12161-12163. doi: 10.1021/jp905357a
2. Tang, K.-H., Mansoorabadi, S. O., Reed, G. H., & Frey, P. A. (2009). Radical Triplets and Suicide Inhibition in Reactions of 4-Thia-d- and 4-Thia-l-lysine with Lysine 5,6-Aminomutase. Biochemistry, 48(34), 8151-8160. doi: 10.1021/bi900828f
3. Chen, Y.-H., Maity, A. N., Pan, Y.-C., Frey, P. A., & Ke, S.-C. (2011). Radical Stabilization Is Crucial in the Mechanism of Action of Lysine 5,6Aminomutase: Role of Tyrosine-263α As Revealed by Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 133(43), 17152-17155. doi: 10.1021/ja207766c
4. Maity, A. N., Lin, H.-H., Chiang, H.-S., Lo, H.-H., & Ke, S.-C. (2015). Reaction of Pyridoxal-5′-phosphate-N-oxide with Lysine 5,6-Aminomutase: Enzyme Flexibility toward Cofactor Analog. ACS Catalysis, 5(5), 3093-3099. doi: 10.1021/acscatal.5b00671
5. Reed, G. H., Mansoorabadi, S. O. (2003). The positions of radical intermediates in the active sites of adenosylcobalamin-dependent enzymes. Current Opinion in Structural Biology, 13(6): 716–721.
6. Toraya, T. (2003). Radical catalysis in coenzyme B-12-dependent isomerization (eliminating) reactions, Chemical Reviews, 2095-2127
7. Banerjee, R. (2003). Radical carbon skeleton rearrangement: Catalysis by coenzyme B-12-dependent mutants. Chemical Reviews, 2083-2094
8. Ke, S.-C., Torrent, M., Museav, D. G., Morokuma, K., Warncke, K. (1999). Identification of dimethylbenzimidazole axial coordination and characterization of N-14 superhyperfine and nuclear quadrupole coupling in Cob(II)alamin bound to ethanolamine deaminase in a catalytically-engaged substrate radical –cobalt(II) biradical state. Biochemistry, 12681-12689
9. Ke, S.-C., Warncke, K. (1999). Interactions of substrate and product radicals with Co-II in cobalamin and with the active site in ethanolamine deaminase, characterized by ESE-EPR and N-14 ESEEM spectroscopies. Journal of the American Chemical Society, 121,9922-9927
10. Han, O., Frey, P. A. (1990). Chemical Model for Pyridoxal 5'-Phosphate Dependent Lysine Aminomutase. Journal of the American Chemical Society, 112, 8982-8983
11. Berkovitch, F., Behshad, E., Tang, K.-H., Enns, E. A., Frey, P. A., & Drennan, C. L. (2004). A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase. Proceedings of the National Academy of Sciences of the United States of America, 101(45), 15870-15875. doi: 10.1073/pnas.0407074101
12. Lo, H.-H., Lin, H.-H., Maity, A. N., & Ke, S.-C. (2016). The molecular mechanism of the open-closed protein conformational cycle transitions and coupled substrate binding, activation and product release events in lysine 5,6aminomutase. Chemical Communications, 52(38), 6399-6402. doi: 10.1039/C6CC01888B
13. Stadtman, T. C., & White, F. H. (1954). Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium. J Bacteriol, 67(6), 651-657.
14. Tang, K.-H., Harms, A., Frey, P. A. (2002). Identification of a novel Pyridoxal 5'-Phosphate binding site in adenosylcobalamin-dependent lysine 5,6-aminomutase from Porphyromonas gingivalis. Biochemistry, 41, 8767-8776
15. Chen, Y.-H., Maity, A. N., Frey, P. A., & Ke, S.-C. (2013). Mechanism-based Inhibition Reveals Transitions between Two Conformational States in the Action of Lysine 5,6-Aminomutase: A Combination of Electron Paramagnetic Resonance Spectroscopy, Electron Nuclear Double Resonance Spectroscopy, and Density Functional Theory Study. Journal of the American Chemical Society, 135(2), 788-794. doi: 10.1021/ja309603a
16. Tang, K.-H., Chang, C. H., & Frey, P. A. (2001). Electron Transfer in the Substrate-Dependent Suicide Inactivation of Lysine 5,6-Aminomutase. Biochemistry, 40(17), 5190-5199. doi: 10.1021/bi010157j
17. Chen, J.-R., & Ke, S.-C. (2018). Magnetic Field Effects on Coenzyme B12- and B6-dependent Lysine 5,6-Aminomutase: Switching of the J-Resonance Through a Kinetically Competent Radical-Pair Intermediate. Physical Chemistry Chemical Physics, 20, 13068-13074. doi: 10.1039/C8CP01497C
18. Tang, K.-H., Chang, C. H., & Frey, P. A. (2001). Electron Transfer in the Substrate-Dependent Suicide Inactivation of Lysine 5,6-Aminomutase. Biochemistry, 40(17), 5190-5199. doi: 10.1021/bi010157j
19. contributors, W. (4 March 2018 20:19 UTC). High-performance liquid chromatography. Retrieved 1 May 2018 05:19 UTC, from https://en.wikipedia.org/w/index.php?title=Highperformance_liquid_chromatography&oldid=828794783
20. contributors, W. (26 April 2018 17:19 UTC). Sodium dodecyl sulfate– polyacrylamide gel electrophoresis. Retrieved 1 May 2018 05:50 UTC, from https://en.wikipedia.org/w/index.php?title=SDS PAGE&oldid=838384288
21. contributors, W. (20 April 2018 20:50 UTC). Ultraviolet-Vvisible spectroscopy. Retrieved 1 May 2018 06:00 UTC, from https://en.wikipedia.org/w/index.php?title=Ultraviolet%E2%80%93visible_sp ectroscopy&oldid=837440884
22. Weber, R. T., Jiang, J., & Barr, D. P. (1998). EMX USER’S MANUAL (2.0 ed. Vol. Manual Version 2.0): Bruker Instruments, Inc.
23. Makins, C., Whitelaw, D. A., McGregor, M., Petit, A., Mothersole, R. G., Prosser, K. E., Wolthers, K. R. (2017). Optimal electrostatic interactions between substrate and protein are essential for radical chemistry in ornithine 4,5-aminomutase. Biochim Biophys Acta Proteins Proteom, 1077-1084。doi:10.1016 / j.bbapap.2017.05.011
24. Griswold, W. R., Toney, M. D., (2010). Chemoenzymatic synthesis of 1-deaza-pyridoxal 5'-phosphate. Bioorg Med Chem Lett, 20(4):1352-4. doi: 10.1016/j.bmcl.2010.01.002
25. Chang, C. H., & Frey, P. A. (2000). Cloning, Sequencing, Heterologous Expression, Purification, and Characterization of Adenosylcobalamin-dependentd-Lysine 5,6-Aminomutase from Clostridium sticklandii. Journal of Biological Chemistry, 275(1), 106-114. doi: 10.1074/jbc.275.1.106
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *