帳號:guest(3.129.23.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李育憲
作者(英文):Yu-Hsien Li
論文名稱:零維錫奈米粒子和二維二硫化錫之合成與其光學性質
論文名稱(英文):Synthesis, Optical Properties of 0D Tin Nanoparticles and 2D Tin Disulfide
指導教授:馬遠榮
指導教授(英文):Yuan-Ron Ma
口試委員:賴建智
劉鏞
口試委員(英文):Chien-Chih Lai
Yung Liu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610614016
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:72
關鍵詞:二維材料二硫化錫錫奈米粒子光學凡德瓦力
關鍵詞(英文):Tin nanoparticlestin disulfide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
本實驗利用熱平板金屬氣相沉積儀製備出純錫奈米粒子與二硫化錫兩種材料。以場發射電子顯微鏡觀測表面形貌得知兩者材料分別為零維與二維材料。以X射線能譜散佈分析儀與X射線光電子能譜儀探討樣品之成分,分析到二硫化錫樣品內參雜了一些一硫化錫材料。以X射線繞射儀分析樣品的晶格結構,得知純錫為四方晶系結構,二硫化錫為六方晶系結構。利用拉曼光譜儀與光致螢光並改變溫度探討其光學特性,得知二硫化錫在蒸鍍時間為四十分鐘時,其參雜的一硫化錫明顯減少許多。純錫並非發光材料,而二硫化錫能隙約為2.84 eV,但在光致螢光中卻無訊號,因此得知此材料為間接能隙。在改變溫度下,純錫與二硫化錫相比,二硫化錫因非諧效應與熱膨脹的影響,對溫度的依賴性相對高。最後利用膠帶將二硫化錫進行分層,證實使用膠帶分層得可行性,確認到此材料為凡德瓦力結構的二維材料,利用吸收穿透光譜探討其變化得知,當層數改變時能隙也會改變,為量子侷限效應的緣故導致。
The zero-dimensional (0D) tin nanoparticles (Sn) and two-dimensional (2D) tin disulfide (SnS2) nanomaterials were synthesized using hot-plate metal vapor deposition (HPMVD) technique. The surface morphology of the two materials was observed by field-emission scanning electron microscopy (FESEM). The results show that the zero-dimensional (0D) nanoparticles of tin and two-dimensional (2D) of tin disulfide. The chemical and electronic composition is studied using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The 2D SnS2¬ was occurred with tin sulfide (SnS). The analysis of X-ray diffractometry (XRD) patterns shows that the Sn nanoparticles consist of tetragonal crystal structure and SnS2 is of hexagonal crystals. Raman spectroscopy and photoluminescence (PL) spectroscopy were used to investigate the optical properties of Sn and SnS2. The optical bandgap of the 2D SnS2 found to be 2.84 eV with indirect type bandgap. At different temperatures, as compared with pure Sn, SnS2 show higher dependence on temperature due to anharmonic effect and thermal expansion. The exfoliation of the 2D SnS2 is achieved using a scotch tape. The exfoliation of SnS2 confirms the two-dimensional nature of the SnS2 layers bound by weak Van der Waals force. The absorption spectroscopy of the SnS2 shows that the transmittance is increased with reducing number of layers of SnS2 caused by the quantum confinement effect.
目錄
誌謝……………………………………………………………..I
摘要…………………………………………………………...III
Abstract………………………………………………………..V
目錄…………………………………………………………..VII
圖目錄……………………………………………….………..IX
表目錄………………………………………….……………..XI

第一章 研究動機與文獻回顧……………..………….………1
1.1 研究動機………………………………………………..1
1.2 文獻回顧………………………………………………..2
1.2.1 純錫的介紹與應用…………………………………..2
1.2.2 二硫化錫的介紹與應用……………………………...2
1.2.3 二維材料……………………………………………3
1.2.4 拉曼原理與非簡諧效應……………………………...7
1.2.5 直接能隙與間接能隙………………………………..10
1.2.6 量子侷限效應……………………………………...11
第二章 純錫與二硫化錫的製備與分層…………………….13
2.1 製成儀器…………………………………………..…...13
2.2 純錫奈米材料的製成方式……………………………...15
2.2.1 實驗材料…………………………………………..15
2.2.2 實驗步驟…………………………………………..15
2.2.3 實驗參數…………………………………………..17
2.3 二硫化錫奈米材料製成方式…………………………....17
2.3.1 實驗材料………………………………...………...17
2.3.2 實驗步驟……………………………...…………...18
2.3.3 實驗參數…………………………...……………...19
2.4 材料分層方法………………………………………….20
第三章 測量儀器介紹……………………………………….23
3.1 場發射掃描式電子顯微鏡(field-emission scanning electron
microscopy, FESEM)……………….…………………….23
3.2 X射線能譜散佈分析儀(energy dispersive spectrometry, EDS)…......25
3.3 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)….….26
3.4 X射線繞射儀(X-ray diffractometry, XRD)……….....……..……..28
3.5 拉曼光譜儀(Raman spectrometry)……………….….……….31
3.6 UV-VIS-NIR微型光譜儀………………….………………32
3.7 光致螢光(photoluminescence, PL)…………..……………….33
第四章 數據與分析討論……………………...…………………35
4.1 場發射電子顯微鏡數據與分析………………………………35
4.2 X射線能譜散佈分析儀數據與分析………………...…………40
4.3 X射線光電子能譜儀數據與分析……………………………..42
4.4 X射線繞射儀數據與分析………………...…………………46
4.5 拉曼光譜數據與分析………………………………………48
4.5.1 室溫下的拉曼光譜…………………………………….48
4.5.2 拉曼成像技術………………………..……………….50
4.5.3 變溫拉曼光譜…………………………..…………….53
4.6 UV-VIS-NIR微型光譜儀數據與分析………………………….54
4.7 光致螢光數據與分析………………………………………56
4.8 二硫化錫分層後的分析…………………………………….57
4.8.1 表面形貌分析………………………………………...57
4.8.2 分層後的UV-VIS-NIR微型光譜儀數據與分析…………….58
第五章 結論…………………………………………………….61
參考文獻…………………….………………………………….65
[1] Chou, H. S., Yang, K. D., Xiao, S. H., Patil, R. A., Lai, C. C., Yeh, W. C., Ma, Y. R., Temperature-dependent Ultraviolet Photoluminescence in Hierarchical Zn, ZnO and ZnO/Zn Nanostructures. Nanoscale, in press (2019).
[2] Patil, R. A., Devan, R. S., Lin, J. H., Ma, Y. R., Patil, P. S., & Liou, Y., Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods. Sol. Energy Mater. Sol., 112, 91-96 (2013).
[3] 莊永淳,Synthesis of Tin Nanoparticles by Chemical Reduction Method in Room Temperature,中原大學化學工程系碩士論文, (2007).
[4] Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., Geim, A. K., Two-dimensional atomic crystals. PNAS, 102, 10451-10453 (2005).
[5] Voiry, D., Yang, J., Chhowalla, M., Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater., 28, 6197-6206 (2016).
[6] Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., & Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263 (2013).
[7] Patil, S. G., Tredgold, R. H., Electrical and photoconductive properties of SnS2 crystals. J. Phys. D: Appl. Phys., 4, 718 (1971).
[8] Lei, Y., Song, S., Fan, W., Xing, Y., & Zhang, H., Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property. J. Phys. Chem. C, 113, 1280-1285 (2009).
[9] Yang, B., Zuo, X., Xiao, H., Zhou, L., Yang, X., Li, G., Chen, X., SnS2 as low-cost counter-electrode materials for dye-sensitized solar cells. Mater. Lett., 133, 197-199 (2014).
[10] Zhou, X., Zhang, Q., Gan, L., Li, H., & Zhai, T., Large‐Size Growth of Ultrathin SnS2 Nanosheets and High Performance for Phototransistors. Adv. Funct. Mater., 26, 4405-4413 (2016).
[11] Ou, J. Z., Ge, W., Carey, B., Daeneke, T., Rotbart, A., Shan, W., Russo, S. P., Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano, 9, 10313-10323 (2015).
[12] Ma, C., Xu, J., Alvarado, J., Qu, B., Somerville, J., Lee, J. Y., Meng, Y. S., Investigating the energy storage mechanism of SnS2-rGO composite anode for advanced Na-ion batteries. Chem. Mater., 27, 5633-5640 (2015).
[13] Doan, M. H., Jin, Y., Adhikari, S., Lee, S., Zhao, J., Lim, S. C., Lee, Y. H., Charge transport in MoS2/WSe2 van der Waals heterostructure with tunable inversion layer. ACS Nano, 11, 3832-3840 (2017).
[14] Jin, Y., Keum, D. H., An, S. J., Kim, J., Lee, H. S., Lee, Y. H., A Van Der Waals homojunction: ideal p–n diode behavior in MoSe2. Adv. Mater., 27, 5534-5540 (2015).
[15] De Haas, W. J., De Boer, J., & Van den Berg, G. J., The electrical resistance of cadmium, thallium and tin at low temperatures. Physica, 2, 453-459 (1935).
[16] Meissner, W., & Ochsenfeld, R., Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften, 21, 787-788 (1933).
[17] Braunisch, W., Knauf, N., Kataev, V., Neuhausen, S., Grütz, A., Kock, A., Wohlleben, D. Paramagnetic Meissner effect in Bi high-temperature superconductors. Phys. Rev. Lett., 68, 1908-1912 (1992).
[18] Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., Miyasaka, T., Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276, 1395-1397 (1997).
[19] Burton, L. A., Whittles, T. J., Hesp, D., Linhart, W. M., Skelton, J. M., Hou, B., Fermin, D. J., Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. J. Mater. Chem. A, 4, 1312-1318 (2016).
[20] Zhuang, H. L., Hennig, R. G., Theoretical perspective of photocatalytic properties of single-layer SnS2. Phys. Rev. B, 88, 115-314 (2013).
[21] Huang, Y., Sutter, E., Sadowski, J. T., Cotlet, M., Monti, O. L., Racke, D. A., Sutter, P., Tin Disulfide An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics. ACS Nano, 8, 10743-10755 (2014).
[22] Sriv, T., Kim, K., Cheong, H., Low-Frequency Raman Spectroscopy of Few-Layer 2H-SnS2. Sci. Rep., 8, 94-101 (2018).
[23] Zhou, X., Zhang, Q., Gan, L., Li, H., & Zhai, T., Large‐Size Growth of Ultrathin SnS2 Nanosheets and High Performance for Phototransistors. Adv. Funct. Mater., 26, 4405-4413 (2016).
[24] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Firsov, A. A., Electric field effect in atomically thin carbon films. Science, 306, 666-669 (2004).
[25] 陳昶孝,李連忠., 二維異質材料: 合成及應用.國家奈米元件實驗室奈米通訊, 21, 15-22 (2014).
[26] Chen, Z., Lin, Y. M., Rooks, M. J., & Avouris, P., Graphene nano-ribbon electronics. Phys. E, 40, 228-232 (2007).
[27] Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 6, 652 (2007).
[28] Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F., 2D materials: to graphene and beyond. Nanoscale, 3, 20-30 (2011).
[29] Wu, L., Guo, J., Wang, Q., Lu, S., Dai, X., Xiang, Y., Fan, D., Sensitivity enhancement by using few-layer black phosphorus -graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sen. Actuators, B, 249, 542-548 (2017).
[30] Naguib, M., Mochalin, V. N., Barsoum, M. W., Gogotsi, Y., 25th anniversary article: MXenes: a new family of two‐dimensional materials. Adv. Mater., 26, 992-1005 (2014).
[31] Svane, A., Gunnarsson, O., Transition-metal oxides in the self -interaction–corrected density-functional formalism., Phys. Rev. Lett., 65, 1148 (1990).
[32] Parks, G. A., The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev., 65, 177-198 (1965).
[33] Kawai, S., Foster, A. S., Björkman, T., Nowakowska, S., Björk, J., Canova, F. F., Meyer, E., Van der Waals interactions and the limits of isolated atom models at interfaces. Nat. Commun., 7, 55-59 (2016).
[34] Joulain, K., Mulet, J. P., Marquier, F., Carminati, R., Greffet, J. J., Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59-112 (2005).
[35] 張元碩, 施銘奇, 胡鑫, 施峻富, 洪勇智, 陳軍互., 有效合成高度氧化石墨烯應用於週期性奈米光柵. 中國物理學會期刊網.化學, 75, 345-355 (2017).
[36] Novoselov, K. S., Mishchenko, A., Carvalho, A., Neto, A. C., 2D materials and van der Waals heterostructures. Science, 353, 9439-9448 (2016).
[37] Yan, Y., Zhao, Y. S., Organic nanophotonics: from controllable assembly of functional molecules to low-dimensional materials with desired photonic properties. Chem. Soc. Rev., 43, 4325-4340 (2014).
[38] Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 9, 30-35 (2008).
[39] Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., & Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263 (2013).
[40] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699-720 (2012).
[41] Pumera, M., Loo, A. H., Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trac. Trend Anal. Chem, 61, 49-53 (2014).
[42] Lien, D. H., Amani, M., Desai, S. B., Ahn, G. H., Han, K., He, J. H., Javey, A., Large-area and bright pulsed electroluminescence in mo- nolayer semiconductors. Nat. Commun. 9, 12-29 (2018).
[43] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Single-layer MoS2 transistors. Nat. Nanotech. 6, 4-17 (2011).
[44] Jiang, H. X., Lin, J. Y., Persistent photoconductivity and related critical phenomena in Zn 0.3 Cd 0.7 Se. Phys. Rev. B, 40, 10-25 (1989).
[45] Bolda, E. L., Tiesinga, E., Julienne, P. S., Effective -scattering-length model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps. Phys. Rev. A, 66, 13-34 (2002).
[46] Lazzeri, M., Calandra, M., Mauri, F., Anharmonic phonon frequency shift in MgB2. Phys. Rev. B., 68, 220-290 (2003).
[47] Hohne, J., Wenning, U., Schulz, H., Hüfner, S., Temperature dependence of the k= 0 optical phonons of Bi and Sb. Z. Naturforsch., B: Chem. Sci., 27, 297-302 (1977).
[48] Deshpande, M. P., Bhatt, S. V., Sathe, V., Rao, R., & Chaki, S. H., Pressure and temperature dependence of Raman spectra and their anharmonic effects in Bi2Se3 single crystal. Phys. B, 433, 72-78 (2014).
[49] Bhatt, S. V., Deshpande, M. P., Sathe, V., & Chaki, S. H., Effect of pressure and temperature on Raman scattering and an anharmonicity study of tin dichalcogenide single crystals. Solid State Commun. 201, 54-58 (2015).
[50] 黃冠霖,無基板支撐氮化銦鎵薄膜之光電性質分析, 國立中央大學材料與工程研究所碩士論文, 2015年.
[51] Link, S., El-Sayed, M. A., Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 54, 331-366 (2003).
[52] 陳力俊, 材料電子顯微鏡學. 全華出版社, 293-303頁, (1997).
[53] 方建能, 蘇建華., 微觀科學檢測利器—掃描式電子顯微鏡暨能量散射光譜儀.臺灣博物季刊, 37, 57-59 (2018).
[54] 張立信, 表面化學分析技術. 國家奈米元件實驗室奈米通訊, 19, 17-23 (2012)..
[55] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 中國材料科學學會, 第219-220頁 (1992). .
[56] 林麗娟, X光繞射原理及其應用. 工業材料X光材料分析技術與應用, 86, 100-109 (2016).
[57] 黃高御., 利用 UV/VIS/NIR 吸收光譜建立 CIGS 太陽能薄膜電池之硫化鎘薄膜製程即時自動監測控制系統之研究.中央大學環境工程研究所學位論文, (2014).
[58] Degrauw, A., Armstrong, R., Rahman, A. A., Ogle, J., Whitta- ker-Brooks, L., Catalytic growth of vertically aligned SnS/SnS2 p–n heterojunctions. Mater. Res. Express, 4, 94-102 (2017).
[59] Sinha, A. K., Sil, A., Sasmal, A. K., Pradhan, M., Pal, T., Synthesis of active tin: an efficient reagent for allylation reaction of carbonyl compounds. New J. Chem., 39, 1685-1690 (2015).
[60] Zhou, X., Zhang, Q., Gan, L., Li, H., Xiong, J., & Zhai, T., Booming development of group IV–VI semiconductors: fresh blood of 2D family. Adv. sci, 3, 160-177 (2016).
[61] Bharatula, L. D., Erande, M. B., Mulla, I. S., Rout, C. S., Late, D. J., SnS2 nanoflakes for efficient humidity and alcohol sensing at room temperature. RSC Advances, 6, 105421-105427 (2016).
[62] Zhou, X., Zhang, Q., Gan, L., Li, H., Xiong, J., Zhai, T., Booming development of group IV–VI semiconductors: fresh blood of 2D family. Adv. Sci. 3, 160-177 (2016).
[63] Bhatt, S. V., Deshpande, M. P., Sathe, V., Chaki, S. H., Effect of pressure and temperature on Raman scattering and an anharmonicity study of tin dichalcogenide single crystals. Solid State Commun. 201, 54-58 (2015).
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *