帳號:guest(18.119.29.179)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Denny Pratama Hasibuan
作者(英文):Denny Pratama Hasibuan
論文名稱:Effect of thickness of NiO thin films on HfO2 /NiO resistive memories
論文名稱(英文):Effect of thickness of NiO thin films on HfO2 /NiO resistive memories
指導教授:馬遠榮
指導教授(英文):Yuan- Ron Ma
口試委員:劉鏞
賴建智
口試委員(英文):Yung Liou
Chien-Chih Lai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610614301
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:62
關鍵詞(英文):NiOHfO2Thin filmResistive switching
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
In the present study, we synthesized HfO2/NiO thin films on Si (100) substrates. The first layer of NiO thin films was synthesized on silicon substrates using radio frequency magnetron sputtering deposition (RFMSD) technique at the various deposition times of 10, 20, 30, 40, and 50 minutes. The layer of HfO2 thin films was synthesized on NiO/Si substrate using hot filament metal vapor deposition (HFMVD) technique for 5 minutes. The morphology and the thickness of HfO2 and NiO thin films can be determined by Field emission scanning electron microscope (FESEM). The crystallines of HfO2 and NiO thin films were examined by X-ray diffraction (XRD). The elemental composition or compound of HfO2 and NiO thin films have been investigated using X-ray photoelectron spectroscopy. Each sample of HfO2/NiO/Si substrate has tested to check the resistive switching which was investigated by an I-V loop method.
Table of Contents
Abstract i
Acknowledgement ii
Table of Contents iv
List of Tables vi
List of Figures vviii
List of Equations x
Chapter 1 Introduction 1
1.1Nickel oxide 2
1.2 Hafnium dioxide 3
1.3 Resistivity switching principle 4
1.3.1 Structure and operation of device 5
1.4 Motivation 7
Chapter 2 Synthesis and characterization technique 9
2.1 Experimental method 9
2.1.1 RF Magnetron sputter deposition technique 9
2.1.2 Hot filament metal vapor deposition (HFMVD) 11
2.1.3 Synthesis of NiO on Silicon 12
2.1.4 Synthesis of HfO2 on NiO/Si substrate 13
2.1.5 Synthesis HfO2/NiO on silicon p-type substrate 15
2.2 Characterization technique 16
2.2.1 Field emission scanning electron microscopy 17
2.2.2 X-ray Diffraction (XRD) 20
2.2.3 X-ray photoelectron spectroscopy 21
2.2.4 Resistivity switching (I-V Measurement) 23
Chapter 3 Results and Discussions 25
3.1 Morphological characterization 25
3.2 X-ray diffraction analysis 28
3.3 X-ray photoelectron spectroscopy (XPS) analysis 31
3.4 Resistivity switching (I-V measurement) 33
3.4.1 Resistivity switching of NiO layers 34
3.4.2 Resistivity switching of HfO2/NiO layers 38
Chapter 4 Conclusion 43
References 45

[1] M. Nasrollahzadeh, Z. Issaabadi, M. Sajjadi, S. M. Sajadi, and M. Atarod, An Introduction to Green Nanotechnology. Elsevier, London (2019)
[2] S. Hasan, A Review on Nanoparticles: Their Synthesis and Types. Res. J. Recent. Sci. 4, 1-3 (2015)
[3] Z. Fan, X. Huang, C. Tan, and H. Zuang, Thin metal nanostructures: synthesis, properties and applications. Chem. Sci. 6, 95-111(2015)
[4] E. J. Cho, H. Holback, K. C. Liu, S. A. Abouelmagd, J. Park, and Y. Yeo, Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol. Pharm. 10, 2093-110 (2013)
[5] G. Maduraiveeran, M. Sasidharan, and W. Jin, Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci. 100574 (2019)
[6] A. O. Juma, E. A. A. Arbab, C. M. Muiva, L. M. Lepodise, and G. T. Mola, Synthesis and characterization of CuO-NiO-ZnO mixed metal oxide nanocomposite. J. Alloys Compd. 723, 866-872 (2017)
[7] A. Pandurang, Transition Metal Oxide Thin Film based Chromogenics and Devices. Elsevier, Amsterdam (2017)
[8] R. Vladušić, R. B. Bucat, and M. Ožić, Understanding ionic bonding – a scan across the Croatian education system. Chem. Educ. Res. Pract. 17, 685-699 (2016)
[9] G. Frenking, and N. Fröhlich, The Nature of the Bonding in Transition-Metal Compounds. Chem. Rev. 100, 717-774 (2000)
[10] H. J. Bolink, E. Coronado, J. Orozco, and M. Sessolo, Efficient polymer light-emitting diode using air-stable metal oxides as electrodes. Adv. Mater. 21, 79-82 (2009)
[11] S. Sagadevan, S. Rajesh, and I. Das, Studies on nanocrystalline nickel oxide thin films for potential applications. Mater. Today.- Proc. 4, 4123-4129 (2017)
[12] D. Feng, T.-N. Gao, M. Fan, A. Li, K. Li, T. Wang, Q. Huo, and Z.-A. Qiao, A general ligand-assisted self-assembly approach to crystalline mesoporous metal oxides. NPG Asia Mater. 10, 800-809 (2018)
[13] A. R. Gheisi, C. Neygandhi, A. K. Sternig, E. Carrasco, H. Marbach, D. Thomele, and O. Diwald, O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles. Phys. Chem. Chem. Phys. 16, 23922-9 (2014)
[14] M. T. Rahman, M. Asadul Hoque, G. T. Rahman, M. A. Gafur, R. A. Khan, and M. K. Hossain, Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys. 13, 102264 (2019)
[15] Z. Said, R. Saidur, and N. A. Rahim, Optical properties of metal oxides based nanofluids. Int. Commun. Heat Mass Transfer 59, 46-54 (2014)
[16] H. I. Jeong, S. Park, H. I. Yang, and W. Choi, Electrical properties of MoSe2 metal-oxide-semiconductor capacitors. Mater. Lett. 253, 209-212 (2019)
[17] M. Mahendiran, J. J. Mathen, M. Racik, J. Madhavan, and M. V. Antony Raj, Investigation of structural, optical and electrical properties of transition metal oxide semiconductor CdO ZnO nanocomposite and its effective role in the removal of water contaminants. J. Phys. Chem. Solids 126, 322-334 (2019)
[18] S. Ghosh, S. R. Polaki, G. Sahoo, E.-M. Jin, M. Kamruddin, J. S. Cho, and S. M. Jeong, Designing metal oxide-vertical graphene nanosheets structures for 2.6 V aqueous asymmetric electrochemical capacitor. J. Ind. Eng. Chem. 72, 107-116 (2019)
[19] D. P. Norton, Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng. R. 43, 139-247 (2004)
[20] K. Gesheva, T. Ivanova, G. Bodurov, I. M. Szilágyi, N. Justh, O. Kéri, S. Boyadjiev, D. Nagy, and M. Aleksandrova, Technologies for deposition of transition metal oxide thin films: application as functional layers in “smart windows” and photocatalytic systems. J. Phys. Conf. Ser. 682, 012011 (2016)
[21] S. Ci, Z. Wen, Y. Qian, S. Mao, S. Cui, and J. Chen, NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode. Sci. Rep. 5, 11919 (2015)
[22] P. Naderi Asrami, M. Saber Tehrani, P. Aberoomand Azar, and S. A. Mozaffari, Impedimetric glucose biosensor based on nanostructure nickel oxide transducer fabricated by reactive RF magnetron sputtering system. J. Electroanal. Chem. 801, 258-266 (2017)
[23] P. Salazar, F. J. García-García, and A. R. González-Elipe, Sensing and biosensing with screen printed electrodes modified with nanostructured nickel oxide thin films prepared by magnetron sputtering at oblique angles. Electrochem. Commun. 94, 5-8 (2018)
[24] H. M. AbdelDayem, M. Faiz, H. S. Abdel-Samad, and S. A. Hassan, Rare earth oxides doped NiO/γ-Al2O3 catalyst for oxidative dehydrogenation of cyclohexane. J. Rare Earths 33, 611-618 (2015)
[25] J. H. Lee, Y. W. Noh, I. S. Jin, S. H. Park, and J. W. Jung, A solution-processed cobalt-doped nickel oxide for high efficiency inverted type perovskite solar cells. J. Power Sources 412, 425-432 (2019)
[26] S. Parthiban, S. Kim, V. Tamilavan, J. Lee, I. Shin, D. Yuvaraj, Y. K. Jung, M. H. Hyun, J. H. Jeong, and S. H. Park, Enhanced efficiency and stability of polymer solar cells using solution-processed nickel oxide as hole transport material. Curr. Appl. Phys. 17, 1232-1237 (2017)
[27] R. S. Kate, S. A. Khalate, and R. J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89-111 (2018)
[28] M. Carbone, E. Maria Bauer, L. Micheli, and M. Missori, NiO morphology dependent optical and electrochemical properties. Colloids Surf. A 532, 178-182 (2017)
[29] X. Qi, G. Su, G. Bo, L. Cao, and W. Liu, Synthesis of NiO and NiO/TiO2 films with electrochromic and photocatalytic activities. Surf. Coat. Technol. 272, 79-85 (2015)
[30] M. A. Rahman, R. Radhakrishnan, and R. Gopalakrishnan, Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method. J. Alloys Compd. 742, 421-429 (2018)
[31] N. N. M. Zorkipli, N. H. M. Kaus, and A. A. Mohamad, Synthesis of NiO nanoparticles through sol-gel method. Procedia Chem. 19, 626-631 (2016)
[32] A. A. Ahmed, M. Devarajan, and N. Afzal, Effects of substrate temperature on the degradation of RF sputtered NiO properties. Mater. Sci. Semicond. Process. 63, 137-141 (2017)
[33] S. S. Nkosi, B. Yalisi, D. E. Motaung, J. Keartland, E. Sideras-Haddad, A. Forbes, and B. W. Mwakikunga, Antiferromagnetic–paramagnetic state transition of NiO synthesized by pulsed laser deposition. Appl. Surf. Sci. 265, 860-864 (2013)
[34] M. Chandrakala, S. Raj Bharath, T. Maiyalagan, and S. Arockiasamy, Synthesis, crystal structure and vapour pressure studies of novel nickel complex as precursor for NiO coating by metalorganic chemical vapour deposition technique. Mater. Chem. Phys. 201, 344-353 (2017)
[35] M. S. Jamal, S. A. Shahahmadi, P. Chelvanathan, H. F. Alharbi, M. R. Karim, M. Ahmad Dar, M. Luqman, N. H. Alharthi, Y. S. Al-Harthi, M. Aminuzzaman, N. Asim, K. Sopian, S. K. Tiong, N. Amin, and M. Akhtaruzzaman, Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results Phys. 14, 102360 (2019)
[36] T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, Optical properties of HfO2 thin films deposited by magnetron sputtering: from the visible to the far-infrared. Thin Solid Films 520, 6793-6802 (2012)
[37] K. C. Das, S. P. Ghosh, N. Tripathy, D. H. Kim, T. I. Lee, J. M. Myoung, and J. P. Kar, Evolution of microstructural and electrical properties of sputtered HfO2 ceramic thin films with RF power and substrate temperature. Ceram. Int. 42, 138-145 (2016)
[38] B. Aguirre, R. S. Vemuri, D. Zubia, M. H. Engelhard, V. Shutthananadan, K. K. Bharathi, and C. V. Ramana, Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using a HfO2 ceramic target. Appl. Surf. Sci. 257, 2197-2202 (2011)
[39] H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis. J. Asian Ceram. Soc. 3, 64-69 (2015)
[40] X.-Y. Zhang, C.-H. Hsu, Y.-S. Cho, S. Zhang, S.-Y. Lien, W.-Z. Zhu, and F.-B. Xiong, Rapid thermal processing of hafnium dioxide thin films by remote plasma atomic layer deposition as high-k dielectrics. Thin Solid Films 660, 797-801 (2018)
[41] G. Carta, N. El Habra, G. Rossetto, L. Crociani, G. Torzo, P. Zanella, M. Casarin, G. Cavinato, G. Pace, S. Kaciulis, and A. Mezzi, Chemical vapor deposition of hafnium dioxide thin films from cyclopentadienyl hafnium compounds. Thin Solid Films 516, 7354-7360 (2008)
[42] R. B. Tokas, S. Jena, S. Thakur, and N. K. Sahoo, Effect of angle of deposition on micro-roughness parameters and optical properties of HfO2 thin films deposited by reactive electron beam evaporation. Thin Solid Films 609, 42-48 (2016)
[43] H. Y. Guo, and Z. G. Ye, Electric characterization of HfO2 thin films prepared by chemical solution deposition. Mater. Sci. Eng. B 120, 68-71 (2005)
[44] A. Cantas, G. Aygun, and R. Turan, Impact of incorporated oxygen quantity on optical, structural and dielectric properties of reactive magnetron sputter grown high-κ HfO2/Hf/Si thin film. Appl. Surf. Sci. 318, 199-205 (2014)
[45] C.-C. Leu, S.-T. Chen, and F.-K. Liu, Metal nanocrystal memory with sol–gel derived HfO2 high-κ tunnel oxide. Thin Solid Films 519, 5629-5633 (2011)
[46] S. B. Kim, Y. H. Ahn, J.-Y. Park, and S. W. Lee, Enhanced nucleation and growth of HfO2 thin films grown by atomic layer deposition on graphene. J. Alloys Compd. 742, 676-682 (2018)
[47] R. Basori, M. Kumar, and A. K. Raychaudhuri, Sustained resistive switching in a single Cu:7,7,8,8-tetracyanoquinodimethane nanowire: a promising material for resistive random access memory. Sci. Rep. 6, 26764 (2016)
[48] K.-D. Liang, C.-H. Huang, C.-C. Lai, J.-S. Huang, H.-W. Tsai, Y.-C. Wang, Y.-C. Shih, M.-T. Chang, S.-C. Lo, and Y.-L. Chueh, Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6, 16537-16544 (2014)
[49] S.-H. Bae, S. Lee, H. Koo, L. Lin, B. H. Jo, C. Park, and Z. L. Wang, The memristive properties of a single VO2 nanowire with switching controlled by self-heating. Adv. Mater. 25, 5098-5103 (2013)
[50] K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J.-S. Kim, and B. H. Park, Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 10, 1359-1363 (2010)
[51] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 526 (2014)
[52] S. Lee, J. Sohn, Z. Jiang, H.-Y. Chen, and H. S. Philip Wong, Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. 6, 8407 (2015)
[53] D. Apalkov, B. Dieny, and J. M. Slaughter, Magnetoresistive random access memory. Proc. IEEE 104, 1796-1830 (2016)
[54] H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Phase change memory. Proc. IEEE 98, 2201-2227 (2010)
[55] H. S. Philip Wong, h. y. Lee, S. Yu, Y. H. Chen, Y. Wu, P. S. Chen, B. Lee, F. Chen, and M.-J. Tsai, Metal–oxide RRAM. Proc. IEEE 100, 1951-1970 (2012)
[56] G. Niu, H.-D. Kim, R. Roelofs, E. Perez, M. A. Schubert, P. Zaumseil, I. Costina, and C. Wenger, Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition. Sci. Rep. 6, 28155 (2016)
[57] J. Molina-Reyes, and L. Hernandez-Martinez, Understanding the resistive switching phenomena of stacked Al/Al2O3/Al thin films from the dynamics of conductive filaments. Complexity 10 (2017)
[58] Reliability of NiO-Based Resistive Switching Memory (ReRAM) Elements with Pillar W Bottom Electrode. IEEE International Memory Workshop (2009)
[59] D. P. Sahu, and S. N. Jammalamadaka, Remote control of resistive switching in TiO2 based resistive random access memory device. Sci. Rep. 7, 17224 (2017)
[60] S. Rehman, J.-H. Hur, and D.-k. Kim, Resistive switching in solution-processed Copper oxide (CuxO) by stoichiometry tuning. J. Phys. Chem. C. 122, 11076-11085 (2018)
[61] R. Jiang, Z. Han, and X. Du, Reliability/uniformity improvement induced by an ultrathin TiO2 insertion in Ti/HfO2/Pt resistive switching memories. Microelectron. Reliab. 63, 37-41 (2016)
[62] J. J. Yang, I. H. Inoue, T. Mikolajick, and C. S. Hwang, Metal oxide memories based on thermochemical and valence change mechanisms. MRS Bull. 37, 131-137 (2012)
[63] I. Valov, Redox-Based Resistive Switching memories (ReRAMs): electrochemical systems at the atomic scale. Chem. Electro. Chem. 1, 26-36 (2014)
[64] E. Lim, and R. Ismail, Conduction mechanism of valence change resistive switching memory: A survey. Electronics 4, 586-613 (2015)
[65] F. M. Simanjuntak, D. Panda, K.-H. Wei, and T.-Y. Tseng, Status and prospects of ZnO-based resistive switching memory devices. Nanoscale Res. Lett. 11, 368 (2016)
[66] M. P. Deshpande, K. N. Patel, V. P. Gujarati, K. Patel, and S. H. Chaki, Structural, thermal and optical properties of nickel oxide (NiO) nanoparticles synthesized by chemical precipitation method. Adv. Mater. Res. 1141, 65-71 (2016)
[67] F. Taghizadeh, The study of structural and magnetic properties of NiO nanoparticles. Opt. Photon. J. 6, 164-169 (2016)
[68] Y. Zhang, J. Zuo, P. Li, Y. Gao, W. He, and Z. Zheng, Study of the nanoscale electrical performance of NiO thin films by C-AFM and KPFM techniques: the effect of grain boundary barrier. Phys. E 111, 75-78 (2019)
[69] N. Dhull, G. Kaur, V. Gupta, and M. Tomar, Development of nanostructured nickel oxide thin film matrix by rf sputtering technique for the realization of efficient bioelectrode. Vacuum 158, 68-74 (2018)
[70] H. Wang, Y. Wang, and X. Wang, Pulsed laser deposition of the porous nickel oxide thin film at room temperature for high-rate pseudocapacitive energy storage. Electrochem. Commun. 18, 92-95 (2012)
[71] D. Y. Jiang, J. M. Qin, X. Wang, S. Gao, Q. C. Liang, and J. X. Zhao, Optical properties of NiO thin films fabricated by electron beam evaporation. Vacuum 86, 1083-1086 (2012)
[72] T. M. Roffi, S. Nozaki, and K. Uchida, Growth mechanism of single-crystalline NiO thin films grown by metal organic chemical vapor deposition. J. Cryst. Growth 451, 57-64 (2016)
[73] D. Mateos, B. Valdez, J. R. Castillo, N. Nedev, M. Curiel, O. Perez, A. Arias, and H. Tiznado, Synthesis of high purity nickel oxide by a modified sol-gel method. Ceram. Int. 45, 11403-11407 (2019)
[74] M. Shen, A. Han, X. Wang, Y. Goo, A. Kargar, Y. Lin, P. Du, J. Jiang, J. Zhang, S. A. Dayeh, and B. Xiang, Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires. Sci. Rep. 5, 8557 (2015)
[75] R. A. Patil, R. S. Devan, J.-H. Lin, Y.-R. Ma, P. S. Patil, and Y. Liou, Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods. Sol. Energy Mater. Sol. Cells 112, 91-96 (2013)
[76] S. Cao, W. Zeng, T. Li, J. Gong, and Z. Zhu, Hydrothermal synthesis of NiO nanobelts and the effect of sodium oxalate. Mater. Lett. 156, 25-27 (2015)
[77] Y. Tian, Z. Li, S. Dou, X. Zhang, J. Zhang, L. Zhang, L. Wang, X. Zhao, and Y. Li, Facile preparation of aligned NiO nanotube arrays for electrochromic application. Surf. Coat. Technol. 337, 63-67 (2018)
[78] H. Moulki, C. Faure, M. Mihelčič, A. Š. Vuk, F. Švegl, B. Orel, G. Campet, M. Alfredsson, A. V. Chadwick, D. Gianolio, and A. Rougier, Electrochromic performances of nonstoichiometric NiO thin films. Thin Solid Films 553, 63-66 (2014)
[79] U. Boesenberg, M. A. Marcus, A. K. Shukla, T. Yi, E. Mcderry, P. F. Teh, M. Srinivasan, A. Moewes, and J. Cabana, Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. Sci. Rep. 4, 7133 (2014)
[80] W. Ruan, Y. Hu, F. Xu, and S. Zhang, Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1−Bi Br3. Org. Electron. 70, 252-257 (2019)
[81] P. Jančovič, B. Hudec, E. Dobročka, J. Dérer, J. Fedor, and K. Fröhlich, Resistive switching in HfO2-based atomic layer deposition grown metal–insulator–metal structures. Appl. Surf. Sci. 312, 112-116 (2014)
[82] R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, and J. Jansen, Surface engineering for bone implants: a trend from passive to active surfaces. Coatings 2, 95-119 (2012)
[83] D. Stokes, Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM), John Wiley & Sons Ltd., West Sussex (2008)
[84] K. N. Shinde, Dhoble S.J., Swart H.C., and Park K. Methods of Measurements (Instrumentation). In: Phosphate Phosphors for Solid-State Lighting. Springer, Heidelberg (2012)
[85] A. L. Baldwin, and N. L. Trent, An integrative review of scientific evidence for reconnective healing. J. Altern. Complement. Med. 23, 590-598 (2017)
[86] G. Huebschen, I. Altpeter, R. Tschunky, and H. G. Herrmann, Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier Science, .Duxford (2016)
[87] R. F. Egerton, Physical principles of electron microscopy an introduction to TEM, SEM, and AEM. springer, Alberta (2005)
[88] B. E. Warren, X-Ray Diffraction. Dover Publications, Massachusetts (2012)
[89] Z. Guo, and L. Tan, Fundamentals and applications of nanomaterials. Artech House. London (2009)
[90] P. van der Heide, X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices. Wiley, New Jersey (2011)
[91] J. F. Watts, and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. Wiley, West Sussex (2003)
[92] A. Singh, S. K. Gupta, and A. Garg, Inkjet printing of NiO films and integration as hole transporting layers in polymer solar cells. Sci. Rep. 7, 1775 (2017)
[93] A. A. Ahmed, M. R. Hashim, R. Abdalrheem, and M. Rashid, High-performance multicolor metal-semiconductor-metal Si photodetector enhanced by nanostructured NiO thin film. J. Alloys Compd. 798, 300-310 (2019)
[94] Y. Wang, J. Ghanbaja, P. Boulet, D. Horwat, and J. F. Pierson, Growth, interfacial microstructure and optical properties of NiO thin films with various types of texture. Acta Mater. 164, 648-653 (2019)
[95] H. Long, T. Shi, H. Hu, S. Jiang, S. Xi, and Z. Tang, Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Sci. Rep. 4, 7413 (2014)
[96] W. Liu, Z. Liu, F. Yan, and T. Tan, Influence of RF power on the structure and optical properties of sputtered hafnium dioxide thin films. Phys. B 405, 1108-1112 (2010)
[97] V. Dave, P. Dubey, H. O. Gupta, and R. Chandra, Effect of sputtering gas on structural, optical and hydrophobic properties of DC-sputtered hafnium oxide thin films. Surf. Coat. Technol. 232, 425-431 (2013)
[98] D. S. Dalavi, R. S. Devan, R. S. Patil, Y.-R. Ma, M.-G. Kang, J.-H. Kim, and P. S. Patil, Electrochromic properties of dandelion flower like nickel oxide thin films. J. Mater. Chem. A. 1, 1035-1039 (2013)
[99] R. A. Patil, C. P. Chang, R. S. Devan, Y. Liou, and Y. R. Ma, Impact of nanosize on supercapacitance: study of 1D nanorods and 2D thin-films of Nickel oxide. ACS Appl. Mater. Interfaces 8, 9872-80 (2016)
[100] W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, and X. Li, 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci. Rep. 7, 5220 (2017)
[101] N. Manikanthababu, M. Dhanunjaya, S. V. S. Nageswara Rao, and A. P. Pathak, SHI induced effects on the electrical and optical properties of HfO2 thin films deposited by RF sputtering. Nucl. Instrum. Methods Phys. Res. Sect. B 379, 230-234 (2016)
[102] X. Luo, Y. Li, H. Yang, Y. Liang, K. He, W. Sun, H.-H. Lin, S. Yao, X. Lu, L. Wan, and Z. Feng, Investigation of HfO2 thin films on Si by x-ray photoelectron spectroscopy, Rutherford backscattering, grazing incidence x-ray diffraction and variable angle spectroscopic ellipsometry. Crystals 8, 248 (2018)
[103] L.-G. Wang, X. Qian, Y. Cao, Z.-Y. Cao, G.-Y. Fang, A. Li, and D. Wu, Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications. Nanoscale Res. Lett. 10, 135 (2015)
[104] Y. Y. Chen, L. Goux, L. Pantisano, J. Swerts, C. Adelmann, S. Mertens, V. V. Afanasiev, X. P. Wang, B. Govoreanu, R. Degraeve, S. Kubicek, V. Paraschiv, B. Verbrugge, N. Jossart, L. Altimime, M. Jurczak, J. Kittl, G. Groeseneken, and D. J. Wouters, Scaled X-bar TiN/HfO2/TiN RRAM cells processed with optimized plasma enhanced atomic layer deposition (PEALD) for TiN electrode. Microelectron. Eng. 112, 92-96 (2013)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *