帳號:guest(3.135.193.125)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Clara Sinta Saragih
作者(英文):Clara Sinta Saragih
論文名稱:Synthesis and Characterization of Bi@Bi2O3 Nanoparticles
論文名稱(英文):Synthesis and Characterization of Bi@Bi2O3 Nanoparticles
指導教授:馬遠榮
指導教授(英文):Yuan- Ron Ma
口試委員:劉鏞
賴建智
口試委員(英文):Yung Liou
Chien-Chih Lai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610614302
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:56
關鍵詞(英文):SynthesisCharacterizationBismuthBi2O3Pulsed laser DepositionNanoparticlesthin film
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
Bismuth (Bi) thin films and nanoparticles were synthesized using Pulsed Laser Deposition (PLD) technique. Bismuth thin films and nanoparticles were synthesized at various substrate temperature of 25, 50, 75, 100, 125, 150, 175, 200, 225 and 250 °C. The properties of bismuth thin films and nanoparticles were examined using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Raman spectroscopy and electrical properties (I-V) measurement. The thin films of Bi were deposited at substrate temperatures of 25, 50 and 75 °C, however, nanoparticles were synthesized when substrate temperatures were 100, 125, 150, 175, 200, 225 and 250 °C. The thickness of Bi thin films and height also the size of the nanoparticles increases with the substrate temperature. The surfaces of the Bi thin films and nanoparticles were oxidized in atmospheric pressure and at room temperature. The oxidized surfaces of the nanoparticles and thin films were studied using XPS. The Raman spectroscopy and XRD studies confirm that the synthesized thin films and nanoparticles are of Bi metal of hexagonal crystal structure.
Abstrac i
Acknowledgement ii
Table of Contents iii
List of Tables v
List of Figures v
List of Equations ix
Chapter 1 Introduction 1
1.1 Bismuth 1
1.2 Silicon 2
1.3 Bismuth Oxide 3
1.4 Synthesis of Bismuth/bismuth oxide 6
1.5 Motivation 8
Chapter 2 Synthesis and Characterization Techniques 9
2.1 Synthesis techniques 10
2.2 Characterization techniques 13
2.2.1Field emission scanning electron microscopy (FESEM) … 14
2.2.2 X-ray Difraction (XRD) 16
2.2.3 X-ray Photoelectron Spectroscopy (XPS) 18
2.2.5 Raman spectroscopy 20
Chapter 3 Result and Discussions 23
3.1 Morphological studies 23
3.2 X-ray photoelectron spectroscopy studies 30
3.3 Crystal Structure studies 33
3.4 Raman spectroscopy 36
3.5 IV curve measurement 38
Chapter 4 Conclusion 41
References 43
[1] C. Díaz-Guerra, P. Almodóvar, M. Camacho-López, S. Camacho-López, J. Piqueras, Formation of β-Bi2O3 and δ-Bi2O3 during laser irradiation of Bi films studied in-situ by spatially resolved Raman spectroscopy, J. Alloys Compd., 723, 520-526 (2017)
[2] M. Vila, C. Díaz-Guerra, J. Piqueras, Luminescence and Raman study of α-Bi2O3 ceramics, Materials Chemistry and Physics, 133 (2012) 559-564.
[3] L. Leontie, M. Caraman, M. Delibaş, G.I. Rusu, Optical properties of bismuth trioxide thin films, Materials Research Bulletin, 36, 1629-1637 (2001)
[2] L. Torrisi, L. Silipigni, N. Restuccia, S. Cuzzocrea, M. Cutroneo, F. Barreca, B. Fazio, G. Di Marco, S. Guglielmino, Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy, J. Phys. Chem. Solids, 119, 62-70 (2018)
[3] L. Leontie, M. Caraman, A. Visinoiu, G.I. Rusu, On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition, Thin Solid Films, 473, 230-235 (2005)
[4] P. J. Sadler, H. Li and H. Su, Coordination chemistry of metals in medicine: target sites for bismuth. Coord. Chem. Rev. 185, 689-709, (2009)
[5] R. A. Patil, M. K. Wei, P. H. Yeh, J. B. Liang, W. T. Gao, J. H. Lin, Y. Liou, Y. R. Ma, Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence, Nanoscale, 8, 3565-3571 (2016)
[6] M. Vila, C. Díaz-Guerra, J. Piqueras, Luminescence and Raman study of α-Bi2O3 ceramics, Mater. Chem. Phys., 133 (2012) 559-564.
[7] K. S. Rudramamba, S. K. Taherunnisa, D. V. K. Reddy, N. Veeraiah, M. R. Reddy, The structural and warm light emission properties of Sm3+/Tb3+ doubly doped strontium bismuth borosilicate glasses for LED applications, Spectrochim. Acta, Part A, 220, 117097 (2019)
[8] K. S. Rudramamba, D. V. Krishna Reddy, T. Sambasiva Rao, S. K. Taherunnisa, N. Veeraiah, M. Rami Reddy, Optical properties of Sm3+ doped strontium bismuth borosilicate glasses for laser applications, Opt. Mater. 89, 68-79 (2019)
[9] B. -R. Lai, L.-Y. Lin, B.-C. Xiao, Y. -S. Chen, Facile synthesis of bismuth vanadate/bismuth oxide heterojunction for enhancing visible light-responsive photoelectrochemical performance, J. Taiwan Inst. Chem. Eng. 100, 178-185 (2019)
[10] M. Kushimoto, Y. Honda, H. Amano, Growth of semipolar high-indium-content InGaN quantum wells using InGaN tilting layer on Si(001), Jpn. J. Appl. Phys. 55, 05FA10-1 (2016)
[11] G. Yang, J. Chang, J. Zhao, Y. Tong, F. Xie, J. Wang, Q. Zhang, H. Huang, D. Yan, Investigation of light output performance for gallium nitride-based light-emitting diodes grown on different shapes of patterned sapphire substrate, Mater. Sci. Semicond. Process. 33, 149-153 (2015)
[12] K. -C. Chen, S. -Y. Huang, W. -K. Wang, R. -H. Horng, Performance improvement of vertical ultraviolet -LEDs with AlSi alloy substrates, Opt. Express, 23 , 15452-15458 (2015)
[13] B. Zhang, H. Liang, Y. Wang, Z. Feng, K. W. Ng, K. M. Lau, High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates, J. Cryst. Growth, 298, 725-730 (2007)
[14] S. Tan, T. Suzue, S. L. Selvaraj, T. Egawa, Influence of growth parameters and thickness of aln spacer on electrical properties of AlGaN/AIN/GaN high-electron-mobility transistors grown on 4-inch si substrate, Jpn. J. Appl. Phys. 48, 111002 (2009)
[15] B. Zhang, H. Liang, Y. Wang, Z. Feng, K.W. Ng, K. M. Lau, High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates, J. Cryst. Growth, 298, 725-730 (2007)
[16] J. Li, J. Y. Lin, H. X. Jiang, Growth of III-nitride photonic structures on large area silicon substrates, Appl. Phys. Lett. 88, 171909 (2006)
[17] A. Dadgar, Sixteen years GaN on Si, Phys. Status Solidi A, 252, 1063-1068 (2015)
[18] B. S M. Hudak, J. Song, H. Sims, M. C. Troparevsky, T. S. Humble, S. T. Pantelides, P. C. Snijders, A. R. Lupini, Directed atom-by-atom assembly of dopants in silicon, ACS Nano, 12, 5873-5879 (2018)
[19] W. -K. Wang, M. -C. Jiang, Growth behavior of hexagonal GaN on Si(100) and Si(111) substrates prepared by pulsed laser deposition, Jpn. J. Appl. Phys. 5, 095503 (2016)
[20] K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayesh, F. Natali, Structure of oxidized bismuth nanoclusters, Acta Crystallogr., Sect. B: Struct. Sci, 63, 569-576 (2007)
[21] T. Nagao, T. Doi, T. Sekiguchi, S. Hasegawa, Epitaxial growth of single-crystal ultrathin films of bismuth on Si(111), Jpn. J. Appl. Phys. 39, 4567-4570 (2000)
[22] J. Waters, D. Crouch, J. Raftery, P. O'Brien, Deposition of bismuth chalcogenide thin films using novel single-source precursors by metal-organic chemical vapor deposition, Chem. Mater. 16, 3289- 3298 (2004)
[23] E. V. Anoikin, P. J. Sides, Plasma-activated chemical vapor deposition of bismuth-substituted iron garnets for magneto-optical data storage, IEEE Trans. Magn. 31, 3239-3241 (1995)
[24] P. Brack, J. S. Sagu, T. A. N. Peiris, A. McInnes, M. Senili, K. G. U. Wijayantha, F. Marken, E. Selli, Aerosol-assisted CVD of bismuth vanadate thin films and their photoelectrochemical properties, Chem. Vap. Deposition, 21, 41-45 (2015)
[25] C. E. Knapp, C. J. Carmalt, Solution based CVD of main group materials, Chem. Soc. Rev. 45, 1036-106 (2016)
[26] T. Flores, M. Arronte, E. Rodriguez, L. Ponce, J.C. Alonso, C. Garcia, M. Fernandez, E. Haro, Bismuth thin films obtained by pulsed laser deposition, Proc.SPIE Int.Soc. Opt. Eng. Proceedings of SPIE, 3572, 70-73 (1999)
[27] Z. Xi-Wen, Fabrication of crystalline bismuth-substituted yttrium iron garnet nanofibers via sol–gel and calcination-assisted electrospinning, J. Cryst. Growth, 310, 3235-3239 (2008)
[28] A. M. Adam, E. Lilov, V. Lilova, P. Petkov, Characterization and optical properties of bismuth chalcogenide films prepared by pulsed laser deposition technique, Mater. Sci. Semicond. Process. 57, 210- 219 (2017)
[29] F. Tudorache, I. Petrila, S. Condurache-Bota, C. Constantinescu, M. Praisler, Humidity sensors applicative characteristics of granularized and porous Bi2O3 thin films prepared by oxygen plasma-assisted pulsed laser deposition, Superlattices Microstruct. 77, 276-285 (2015)
[30] A. Nikolaeva, D. Gitsu, L. Konopko, M. J. Graf, T. E. Huber, Quantum interference of surface states in bismuth nanowires probed by the Aharonov-Bohm oscillatory behavior of the magnetoresistance, Phys. Rev. B: Condens. Matter, 77, 075332 (2008)
[31] J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, H. Zhu, In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance, Appl. Catal., B, 142–143 (2013)
[32] J. C. G. de Sande, T. Missana, C. N. Afonso, Optical properties of pulsed laser deposited bismuth films, J. Appl. Phys, 80, 7023-7027 (1996)
[33] M. R. Burton, C. Lei, P. A. Staniec, N. J. Terrill, A. M. Squires, N. M. White, I. S. Nandhakumar, 3D semiconducting nanostructures via inverse lipid cubic phases, Sci. Rep. 7, 6405 (2017)
[34] R. A. Ismail, F. A. Fadhil, Effect of electric field on the properties of bismuth oxide nanoparticles prepared by laser ablation in water, J. Mater. Sci. - Mater. Electron., 25, 1435-1440 (2014)
[35] C. L. Gomez, O. Depablos-Rivera, P. Silva-Bermudez, S. Muhl, A. Zeinert, M. Lejeune, S. Charvet, P. Barroy, E. Camps, S.E. Rodil, Opto-electronic properties of bismuth oxide films presenting different crystallographic phases, Thin Solid Films, 578, 103-112 (2015)
[36] Y. Li, M.A. Trujillo, E. Fu, B. Patterson, L. Fei, Y. Xu, S. Deng, S. Smirnov, H. Luo, Bismuth Oxide: A new lithium-ion battery anode, J Mater Chem A Mater, 1, 12123-12127 (2013)
[37] C. Díaz-Guerra, P. Almodóvar, M. Camacho-López, S. Camacho-López, J. Piqueras, Formation of β-Bi2O3 and δ-Bi2O3 during laser irradiation of Bi films studied in-situ by spatially resolved Raman spectroscopy, J. Alloys Compd., 723, 520-526 (2017)
[38] M. Jalalah, M. Faisal, H. Bouzid, J.-G. Park, S.A. Al-Sayari, A.A. Ismail, Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light, J. Ind. Eng. Chem., 30, 183-189 (2015)
[39] H. -Y. Jiang, P. Li, G. liu, J. Ye, J. Lin, Synthesis and photocatalytic properties of metastable β-Bi2O3 stabilized by surface-coordination effects, J. Mater. Chem. A , 3, 5119-5125 (2015)
[40] K. Gladinez, K. Rosseel, J. Lim, A. Marino, G. Heynderickx, A. Aerts, Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic, Phys. Chem. Chem. Phys., 19, 27593-27602 (2017)
[41] A. R. Rajamani, S. Jothi, M. D. Kumar, S. Srikaanth, M. K. Singh, G. Otero-Irurueta, D. Ramasamy, M. Datta, M. Rangarajan, Effects of additives on kinetics, morphologies and lead-sensing property of electrodeposited bismuth films, J. Phys. Chem. C, 120, 22398-22406 (2016)
[42] Y. S. Rammah, A. A. Ali, R. El-Mallawany, A.M. Abdelghany, Optical properties of bismuth borotellurite glasses doped with NdCl3, J. Mol. Struct., 1175, 504-511 (2019)
[43] A. M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering, Acc. Chem. Res., 43, 190-200 (2010)
[44] R. S. Devan, R. A. Patil, J. -H. Lin, Y. -R. Ma, One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications, Adv. Funct. Mater., 22, 3326-3370 (2012)
[45] M. M. Patil, V. V. Deshpande, S. R. Dhage, V. Ravi, Synthesis of bismuth oxide nanoparticles at 100 °C, Mater. Lett., 59, 2523-2525 (2005)
[46] A. S. Prakash, C. Shivakumara, M. S. Hegde, L. Dupont, J. M. Tarascon, Synthesis of non-stoichiometric Bi2O4−x by oxidative precipitation, Mater. Res. Bull., 42, 707-712 (2007)
[47] D. Pérez-Mezcua, I. Bretos, R. Jiménez, J. Ricote, R.J. Jiménez-Rioboó, C.G. da Silva, D. Chateigner, L. Fuentes-Cobas, R. Sirera, M.L. Calzada, Photochemical solution processing of films of metastable phases for flexible devices: the β-Bi2O3 polymorph, Sci. Rep., 6, 39561 (2016)
[48] L. Shan, G. Wang, D. Li, X. San, L. Liu, L. Dong, Z. Wu, Band alignment and enhanced photocatalytic activation of α/β-Bi2O3 heterojunctions via in situ phase transformation, J. Chem. Soc., Dalton Trans., 44, 7835-7843 (2015)
[49] Y. -C. Wu, Y. -C. Chaing, C. -Y. Huang, S. -F. Wang, H. -Y. Yang, Morphology-controllable Bi2O3 crystals through an aqueous precipitation method and their photocatalytic performance, Dyes Pigm., 98, 25-30 (2013)
[50] I. Rodríguez, D. Hinojosa-Romero, A. Valladares, R.M. Valladares, A.A. Valladares, A facile approach to calculating superconducting transition temperatures in the bismuth solid phases, Sci. Rep., 9, 5256 (2019)
[51] S. Supriya, Effect of sintering temperature and micro structural analysis on sol-gel derived silver bismuth titanate ceramics, Mater. Res. Bull., 96, 290-295 (2017)
[52] C. Sameera Devi, M. Buchi Suresh, G.S. Kumar, G. Prasad, Microstructural and high temperature dielectric, ferroelectric and complex impedance spectroscopic properties of BiFeO3 modified NBT-BT lead free ferroelectric ceramics, Mater. Sci. Eng., B, 228, 38-44 (2018)
[53] S. J. A. Moniz, C. S. Blackman, C. J. Carmalt, G. Hyett, MOCVD of crystalline Bi2O3 thin films using a single-source bismuth alkoxide precursor and their use in photodegradation of water, J. Mater. Chem., 20, 7881-7886 (2010)
[54] P. H. Le, C. -N. Liao, C. W. Luo, J. Leu, Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition, J. Alloys Compd., 615, 546-552 (2014)
[55] A. J. E. Rettie, S. Mozaffari, M. D. McDaniel, K. N. Pearson, J. G. Ekerdt, J. T. Markert, C. B. Mullins, Pulsed laser deposition of epitaxial and polycrystalline bismuth vanadate thin films, J. Phys. Chem. C, 118, 26543-26550 (2014)
[56] D. H. A. Blank, M. Dekkers, G. Rijnders, Pulsed laser deposition in Twente: from research tool towards industrial deposition, J. Phys. D: Appl. Phys., 47, 034006 (2014)
[57] J. H. Neave, B. A. Joyce, P. J. Dobson, N. Norton, Dynamics of film growth of GaAs by MBE from Rheed observations, Appl. Phys. A, 31, 1-8 (1983)
[58] J. Schwarzkopf, R. Dirsyte, M. Rossberg, G. Wagner, R. Fornari, Deposition of bismuth-titanate films with liquid-delivery spin MO-CVD, Mater. Sci. Eng. B, 144, 132-137 (2007)
[59] S. Condurache-Bota, N. Tigau, A.P. Rambu, G.G. Rusu, G.I. Rusu, Optical and electrical properties of thermally oxidized bismuth thin films, Appl. Surf. Sci., 257, 10545-10550 (2011)
[60] K. N. Shinde, Dhoble S. J., Swart H. C., and Park K. Methods of Measurements (Instrumentation). In: Phosphate Phosphors for Solid-State Lighting. Springer, Heidelberg (2012)
[61] P. van der Heide, X-ray photoelectron spectroscopy: an introduction to principles and practices. Wiley, New Jersey (2011)
[62] J. F. Watts, and J. Wolstenholme, An introduction to surface analysis by XPS and AES. Wiley, West Sussex (2003)
[63] B. E. Warren, X-Ray Diffraction. Dover Publications, Massachusetts (2012)
[64] W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X.W. Lou, Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries, Energy Environ. Sci., 9, 2881-2891, (2016)
[65] S. Sindhu, J. Mj, N. C V, α-Bi2O3 photoanode in DSSC and study of the electrode-electrolyte interface, RSC Adv., 5, 78299-78305 (2015)
[66] L. Kumari, J. -H. Lin, Y. -R. Ma, Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films, J. Phys. D: Appl. Phys., 41, 025405 (2008)
[67] F. D. Hardcastle, I.E. Wachs, The molecular structure of bismuth oxide by Raman spectroscopy, J. Solid State Chem., 97, 319-331, (1992)
[68] F. Gity, L. Ansari, C. König, G. A. Verni, J. D. Holmes, B. Long, M. Lanius, P. Schüffelgen, G. Mussler, D. Grützmacher, J. C. Greer, Metal-semimetal Schottky diode relying on quantum confinement, Microelectron. Eng. 195, 21-25 (2018)


(此全文20240810後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *