帳號:guest(52.14.89.212)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Micahella Sarmiento
作者(英文):Micahella Sarmiento
論文名稱:著床前哺乳動物胚胎與奈米粒子間相互作用的光譜分析
論文名稱(英文):Study of nanoparticle influence on pre-implantation mammalian embryos: Perspective of spectroscopic quality analysis
指導教授:鄭嘉良
指導教授(英文):Chia-Liang Cheng
口試委員:彭國証
張新侯
口試委員(英文):Kou-Cheng Peng
Hsin-Hou Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610614303
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:49
關鍵詞:著床前哺乳類胚胎拉曼光譜
關鍵詞(英文):Pre-implantation EmbryoRaman SpectroscopyEmbryotoxicity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
Currently, many types of research are about the toxicity of nanoparticle (NP) on embryonic development considering NP’s various applications such as NP-containing products. NPs can possibly be released into the environment, interact with the human body, and even has the possibility to penetrate the reproductive system. Thus, this presented study aims to investigate the effect of nanoparticle (NP) on the developing embryo. By employing Raman Spectroscopy, this study will propose a method to evaluate the embryo quality before and after interaction with amine-functionalized nanodiamond (NDA).

Spectroscopic analysis using Raman spectroscopy is presented as an additional method of estimation of the embryo by determining the embryo quality based on molecular information obtained which is non-invasive and under safe parameters for the live embryo. The Raman spectra of the embryo blastomeres have been measured using 785 nm NIR and 532 nm excitation wavelengths.
Acknowledgments ..... i
Abstract ..... ii
Table of Contents ..... iii
Index of Figures ..... iv
Tables ..... vi
Chapter 1: Introduction .... 1
1.1 Raman Spectroscopy for Embryo Quality Assessment ..... 1
1.2 Cytochrome c..... 2
1.3 Nanotoxicity in embryonic system ..... 3
1.4 Nanodiamond ..... 4
1.1 Research Motivation ..... 5
Chapter 2: Methodology ..... 7
2.1 Preparation of nanoparticle ..... 7
2.1.1 Preparation for FTIR measurement ..... 7
2.1.2 Preparation for particle size measurement ..... 7
2.2 Preparation and treatment of embryos and methods of investigation ..... 7
2.2.1 Animals ..... 7
2.2.2 Preparation of embryos ..... 8
2.2.3 Nanoparticle Interaction ..... 8
2.2.4 Statistical Analysis ..... 9
2.2.5 Raman Measurement ..... 10
Chapter 3: Results and Discussions ..... 11
3.1 Nanoparticle characterization ..... 11
3.2 Influence of nanoparticles on pre-implantation embryos..... 13
3.3 Raman Spectroscopy ..... 16
Chapter 4: Conclusion ..... 31
References ..... 33
Appendix A: Imaging nanoparticle distribution in the embryo.... 39
1. Rodriguez-Alvarez L., Velasquez A.E. Pursuit of Markers to Assess and Select Competence of in vitro-Produced Embryos. In Vitro Fertilization 2(2), 1018 (2015).
2. Scott L. A. & Samuel S. The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum. Reprod. 13(4), 1003 1013 (1998).
3. Van Royen E., Mangelschots K., De Neubourg D., Valkenburg M., Van de Meerssch, M., Ryckaert G., Eestermans W., Gerris J. Characterization of a top-quality embryo, a step towards single-embryo transfer. Hum. Reprod. 14(9), 2345 2349 (1999).
4. Gerris J., De Neubourg D., Mangelschots K., Van Royen E., Van de Meerssche M., Valkenburg M. Prevention of twin pregnancy after in-vitro fertilization or intracytoplasmic sperm injection based on strict embryo criteria (a prospective randomized clinical trial). Hum. Reprod. 14, 2581 2587 (1999).
5. Gardner D. K., Lane M., Stevens J., Schlenker T., Schoolcraft W. B. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73(6), 1155 1158 (2000).
6. Cummins J. M., Breen T.M., Harrison K.L., Shaw J.M., Wilson L.M., Hennessey J.F. A formula for scoring human embryo growth rates in vitro fertilization: its value in predicting pregnancy and in comparison, with visual estimates of embryo quality. J. In Vitro Fertil. Em. 3(5), 284 295 (1986).
7. Taiwanese Society for Reproductive Medicine Retrieved from http://www.tsrm.org.tw/tsrm-tft/en/works/
8. Ferraro J.R., Nakamoto K. and Brown C.W. (2003). Introductory Raman Spectroscopy. Academic Press An imprint of Elsevier Science
9. Heraud P., Marzec K. M., Zhang Q., Yuen W. S., Carroll J., & Wood, B. R. Label-free in vivo Raman microspectroscopic imaging of the macromolecular architecture of oocytes. Scientific Reports, 7(1) (2017).
10. Ishigaki M., Hashimoto K., Sato H., Ozaki Y. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy. Scientific Reports 7: 43942 (2017).
11. Perevedentseva E., Krivokharchenko A., Karmenyan A. V., Chang, H.-H., & Cheng, C.-L. Raman spectroscopy on live mouse early embryo while it continues to develop into blastocyst in vitro. Scientific Reports, 9(1) (2019).
12. Reece Jane B., et al. Campbell Biology. Tenth edition. Boston: Pearson, 2014.
34
13. Brown G.C., Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1777, 877-881 (2008).
14. Li K., Li Y., Shelton J.M., Richardson J.A., Spencer E., Chen Z.J., Wang X., Williams R.S. Cytochrome c Deficiency Causes Embryonic Lethality and Attenuates Stress-Induced Apoptosis. Cell 101, 389-399 (2000).
15. Li P.W., Kuo T.H., Chang J.H., Yeh J.M., Chan W.H. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett 197, 82–87 (2010).
16. De S.K., Paria B.C., Dey S.K., Andrews G.K. Stage-specific effects of cadmium on preimplantation embryo development and implantation in the mouse. Toxicology 80, 13–25 (1993).
17. Yamashita K., Yoshioka Y., Higashiosaka Mimura K., Morishita Y., Nozaki M., Yoshida T., Ogura T., Nabeshi H., Nagano K., Abe Y., Kamada H., Monobe Y., Imazawa T., Aoshima H., Shishid, K., Kawai Y., Mayumi T., Tsunoda S., Itoh N., Yoshikawa, T., Yanagihara I., Saito S., Tsutsumi Y. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6, 321–328 (2011).
18. Takeda K., Suzuki K.I., Ishihara A., Kubo-Irie M., Fujimoto R., Tabata M., Oshio S., Nihei Y., Ihara T., Sugamata M. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci, 55, 95–102 (2009).
19. Shimizu M., Tainaka H., Oba T., Mizuo K., Umezawa M., Takeda K. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6, 20–28 (2009).
20. Cela P., Vesela B., Matalova E., Vecera Z., Buchtova M. Embryonic Toxicity of Nanoparticles. Cells Tissues Organs, 199, 1-23 (2014).
21. Rogers N.J., Franklin N.M., Apte S.C., Batley G.E. The importance of physical and chemical characterization in nanoparticle toxicity studies. Integr Environ Assess Manag., 3, 303–304 (2007).
22. Chu, M., Wu Q., Yang H., Yuan R., Hou S., Yang Y., Zou Y., Xu S., Xu K., Ji A., Sheng L. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6, 670–678 (2010).
23. Williams O. RSC Nanoscience & Nanotechnology No. 31: Nanodiamond The Royal Society of Chemistry (2014).
35
24. Krueger A. Carbon Materials and Nanotechnology. WILEY-VCH Verlag GmbH & Co. KGaA (2010).
25. Schrand A.M., Suzanne A., Hens C., Shenderova O.A. Nanodiamond Particles: Properties and Perspectives for Bioapplications, Critical Reviews in Solid State and Materials Sciences, 34:1-2, 18-74 (2009).
26. Shenderova O.A., Zhirnov V.V., Brenner D.W. Carbon nanostructures, Crit. Rev. Solid State Mater.Sci., 27, 227 (2002).
27. Krueger A., Lang D. Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond. Advanced Functional Materials, 22: 890–906 (2012).
28. Luo C., Zuniga J., Edison E., Palla S., Dong W., Parker-Thornburg J. Superovulation Strategies for 6 Commonly Used Mouse Strains. Journal of the Americal Association for Laboratory Animal Science 50(4) (2011).
29. Rugh, R. The mouse. Its reproduction and development. Burgess Pub. Co., 225-235 (1968).
30. Krivokharchenko A., Karmenyan A., Sarkisov O., Bader M., Chiou A., Shakhbazyan A., Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity. PLoS One, 7(12): e50029 (2012).
31. Campagnolo L., Massimiani M., Palmieri G., Bernardini R., Sacchetti C., Bergamaschi A., Vecchione L., Magrini A., Bottini M., Pietroiusti A. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol, 10:21 (2013).
32. Ema M., Kobayashi N., Naya M., Hanai S., Nakanishi J., Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol, 30(3):343-52 (2010).
33. Semmler-Behnke M., Fertsch S., Schmid G., Wenk A., Kreyling W.G. Uptake of 1.4nm versus 18 nm gold nanoparticles in secondary target organs is size dependent in control and pregnant rats after intratracheal or intravenous application. In:Proceedings of Euro Nano Forum (2007).
34. Assou S., Boumela I., Haouzi D., Anahory T., Dechaud H., De Vos J., Hamamah S. Dynamic changes in gene expression during human early embryo development: From fundamental aspects to clinical applications. Human reproduction update 17. 272-90. 10.1093/humupd/dmq036 (2010).
35. Perevedentseva E., Peer D., Uvarov V., Zousman B., Levinson O. Nanodiamonds of Laser Synthesis for Biomedical Applications. Journal of Nanoscience and Nanotechnology, 15: 1045-1052 (2014).
36
36. Khan Z., Morbeck D.E., Walker D.L., Fredrickson J.R., Stewart E.A., Coddington C.C. Mouse embryos and in vitro stress: does mouse strain matter? Fertility and Sterility, 94(4) (2010).
37. Herrick J.R., Paik T., Strauss K.J., Schoolcraft W.B., Krisher R.L. Building a better mouse embryo assay: effects of mouse strain and in vitro maturation on sensitivity to contaminants of the culture environment. Journal of Assisted Reproduction and Genetics, 33(2): 237-245 (2016).
38. Whitten W.K., Biggers J.D. Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil. 17:399–401 (1968).
39. Suzuki O., Asano T., Yamamoto Y., Takano K., Koura M. Development in vitro of preimplantation embryos from 55 mouse strains. Reprod Fertil Dev. 8:975–80 (1996).
40. Chatot C.L., Lewis J.L., Torres I, Ziomek C.A. Development of 1-cell embryos from different strains of mice in CZB medium. Biol Reprod. 42:432–40 (1990).
41. Khan Z., Wolff H.S., Fredrickson J.R., Walker D.L., Daftary G.S., Morbeck D.E. Mouse strain and quality control testing: improved sensitivity of the mouse embryo assay with embryos from outbred mice. Fertil Steril. 99:847–54 (2013).
42. Hadi T., Hammer M.A., Algire C., Richards T., Baltz J.M. Similar effects of osmolarity, glucose, and phosphate on cleavage past the 2-cell stage in mouse embryos from outbred and F1 hybrid females. Biol Reprod. 72:179–87 (2005).
43. Hopper A.P., Dugan J.M., Gill A.A., Fox O.J.L., May P.W., Haycock J.W. and Claeyssens F. Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomedical Materials, 9(4) (2014).
44. Hardy K., Hooper M.A., Handyside A.H., Rutherford A.J., Winston R.M., Leese, H.J. Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Human Reproduction 4(2): 188-91 (1989).
45. Chen JY., Schopf J.W., Bottjer D.J., Zhang C.-Y., Kudryavtsev A.B., Tripathi A.B., Wang X.Q., Yang Y.H., Gao, X., Yang Y. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. PNAS 104(15) (2007).
46. Bradley J., Pope I., Masia F., Sanusi R., Langbein W., Swann K., Borri P. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development 143(12): 2238-47 (2016).
37
47. Okotrub K.A., Mokrousova V.I., Amstislavsky S.Y., Surovtsev N.V. Lipid Droplet Phase Transition in Freezing Cay Embryos and Oocytes Probed by Raman Spectroscopy. Biophys. J. 115(3): 577-587 (2018).
48. Van Blerkom J., Davis P., Mathwig V., Alexander S. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod 17:393–406 (2002).
49. Piccoli, C., Perna G., Scrima R., Cela O., Rinaldi R., Boffoli D., Capozzi V., Capitanio N. A Novel Redox State Heme a Marker in Cytochrome c Oxidase Revealed by Raman Spectroscopy. Physica Scripta. 2005. 199. 10.1238/Physica.Topical.118a00199 (2005).
50. Cotton T.M., Schultz S.G., Van Duyne R.P. Cytochrome c and Myoglobin Adsorbed on a Silver Electrode Journal of the American Chemical Society, 102(27), 7960-7962 (1980).
51. Shelnutt J.A., Rousseau D.L., Dethmers J.K., Margoliash E. Protein Influences on Porphyrin Structure in Cytochrome c: Evidences from Raman Difference Spectroscopy Biochemistry, 20, 6485-6497 (1981).
52. Onogi C., Hamaguchi H. In Vivo Resonance Raman Detection of Ferrous Cytochrome c from Mitochondria of Single Living Yeast Cells Chem. Lett. 39, 270-271 (2010).
53. Chertkova R.V., Brazhe N.A., Bryantseva T.V., Nekrasov A.N., Dolgikh D.A., Yusipovich A.I. New insight into the mechanism of mitochondrial cytochrome c function. PLoS ONE 12(5): e0178280 (2017).
54. Kakita M., Okuno M., Hamaguchi H. Quantitative analysis of the redox states of cytochromes in a living L929(NCTC) cell by resonance Raman microspectroscopy J. of Biophotonics 1-4 (2012).
55. Okada M., Smith N.I., Palonpon A.F., Endo H., Kawata S., Sodeoka M., Fujita K. Label-free Raman observation of cytochrome c dynamics during apoptosis. Proc Natl Acad Sci. 109, 28–32 (2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *