帳號:guest(18.191.235.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃宇康
作者(英文):Yu-Kang Huang
論文名稱:一種考慮移動電動汽車排放減量和充電需求的虛擬電廠負載平衡電力調度系統
論文名稱(英文):A load-balancing power scheduling system for virtual power plant considering emission reduction and charging demand of moving electric vehicles
指導教授:黃振榮
指導教授(英文):Chenn-Jung Huang
口試委員:陳亮均
王宇武
口試委員(英文):Liang-Jun Chen
Yu-Wu Wang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學號:610621212
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:47
關鍵詞:虛擬電廠可再生能源電力調度資料探勘最佳化
關鍵詞(英文):virtual power plantrenewablespower schedulingdata miningoptimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏收藏:0
隨著新興技術的快速發展和太陽能與風力的配置成本降低,未來可再生能源可以替代傳統發電。儘管與目前配置的集中式能源不同,可再生能源被歸類為一種間歇性能源,可再生能源規模小而分散。在最近的文獻中,提出了虛擬電廠的架構,以取代現有的智能電網。

然而,能源共享概念和間歇能源的不確定性,將導致虛擬電廠的短期能源管理比當前傳統發電系統的集中控制能源管理複雜得多。因此,我們在這項研究中提出了一個用於虛擬電廠的分層日前電力調度系統,以解決複雜的短期能源管理問題。

我們首先從家庭中使用的智慧型電器收集電力消耗數據,並預測生產性消費者的可再生能源的發電能力。然後,考慮通過使用分散式可再生能源的效率,採用所提出的分層電力調度系統來為客戶安排電力使用。在所提出的電力調度機制中也考慮了移動電動車輛的充電管理。

此外,本研究還提出了一種重新分配機制,將社區虛擬電廠產生的多餘電力分配給面臨電力供應短缺的其他人,以及可再生能源的最大使用量和減少社區虛擬電廠在此期間的負擔,可以相應地實現峰值負荷。

實驗結果表明,所提出的日前電力調度系統可以有效減輕對傳統發電的依賴,平衡電力市場的尖峰和非尖峰時段負荷。
With the rapid development of the emerging technologies and significant cost reduction of the deployment for solar energy and wind power, the replacement of traditional power generation by renewable energy becomes feasible in the future.

However, different from currently deployed centralized power sources, renewables are categorized as one kind of intermittent energy sources, and the scale of renewables is small and scattered. In the recent literature, the architecture of virtual power plant was proposed to replace the current smart grid in the future.

However, the energy sharing concept and the uncertainties of intermittent energy sources will cause the short-term energy management for the virtual power plant much more complicated than the current centralized control energy management for traditional power generation system.We thus propose a hierarchical day-ahead power scheduling system for virtual power plant in this work to tackle the complex short-term energy management problems.

We first collect electricity consumption data from smart appliances used in households and predict power-generating capacity of renewable energy sources at the prosumer level.Then, the proposed hierarchical power scheduling system is employed to schedule the usage of electricity for the customers by considering the efficiency of the use of distributed renewables.Notably, charging management of a moving electric vehicle is also considered in the proposed power scheduling mechanism.

In addition, a reallocation mechanism is presented in this work to allocate excess electricity generated in a community virtual power plant to others facing with power supply shortage, and the maximal usage of renewables and reduction of the burden on community virtual power plants during time period of peak load can be achieved accordingly.

The experimental results show that the proposed day-ahead power scheduling system can mitigate the dependency on traditional power generation effectively, and balance peak and off-peak period load of electricity market.
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究方法 2
第三節 論文架構 3
第二章 相關研究與文獻探討 5
第一節 虛擬電廠與電力調度 5
第二節 電動汽車與充電 6
第三節 電力與負載監控 7
第三章 虛擬電廠日前電力調度系統結構 9
i. 主電網日前電力調度主程式 12
ii. CVPP的第一階段日前電力調度 13
iii. CVPP的第二階段日前電力調度 14
iv. CVPP的第三階段日前電力調度 15
v. 生產性消費者的第一階段日前電力調度 15
vi. 生產性消費者的第二階段日前電力調度 18
vii. 生產性消費者的第三階段日前電力調度 19
viii. 移動中電動車的充電計劃 19
ix. 主電網上的即時電力追蹤 20
x. CVPP即時電力追蹤 21
xi. 生產性消費者的即時電力追蹤 21
第四章 實驗結果分析 23
第五章 結論 29
[1]S. Kwon, Y., Xu, & N. Gautam, Meeting inelastic demand in systems with storage and renewable sources. IEEE Transactions on Smart Grid, (2017), 8(4), 1619-1629.
[2]A. Baringo & L. Baringo, A stochastic adaptive robust optimization approach for the offering strategy of a virtual power plant. IEEE Transactions on Power Systems, (2017), 32(5), 3492-3504.
[3]E. G. Kardakos, C. K. Simoglou, & A. G. Bakirtzis, Optimal offering strategy of a virtual power plant: A stochastic bi-level approach. IEEE Transactions on Smart Grid, (2016), 7(2), 794-806.
[4]A. T. Al-Awami, N. A. Amleh, & A. M. Muqbel, Optimal demand response bidding and pricing mechanism with fuzzy optimization: Application for a virtual power plant. IEEE Trans. Ind. Appl, (2017), 53(5), 5051-5061.
[5]C. Wei, J. Xu, S. Liao, Y. Sun, Y. Jiang, D. Ke, & J. Wang, A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy. Applied Energy, (2018), 224, 659-670.
[6]Y. Liu, M. Li, H. Lian, X. Tang, C. Liu, & C. Jiang, Optimal dispatch of virtual power plant using interval and deterministic combined optimization. International Journal of Electrical Power & Energy Systems, (2018), 102, 235-244.
[7]Z. Tan, G. Wang, L. Ju, Q. Tan, & W. Yang, Application of CVaR risk aversion approach in the dynamical scheduling optimization model for virtual power plant connected with wind-photovoltaic-energy storage system with uncertainties and demand response. Energy, (2017), 124, 198-213.
[8]M. J. Kasaei, M. Gandomkar, & J. Nikoukar, Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant. Journal of Energy Resources Technology, (2017), 139(6), 062003.
[9]M. J. Kasaei, Energy and operational management of virtual power plant using imperialist competitive algorithm. International Transactions on Electrical Energy Systems, (2018), e2617.
[10]M. J. Kasaei, M. Gandomkar, & J. Nikoukar, Optimal management of renewable energy sources by virtual power plant. Renewable Energy, (2017), 114, 1180-1188.
[11]Y. Shi, H. D. Tuan, A. V. Savkin, T. Q. Duong, & H. V. Poor, Model predictive control for smart grids with multiple electric-vehicle charging stations. To appear in IEEE Transactions on Smart Grid, (2018).
[12]H. Yang, H. Pan, F. Luo, J. Qiu, Y. Deng, M. Lai, & Z. Y. Dong, Operational planning of electric vehicles for balancing wind power and load fluctuations in a microgrid. IEEE Transactions on Sustainable Energy, (2017), 8(2), 592-604.
[13]X. Wang & Q. Liang, Energy management strategy for plug-in hybrid electric vehicles via bidirectional vehicle-to-grid. IEEE Systems Journal, (2017), 11(3), 1789-1798.
[14]G. Li, D. Wu, J. Hu, Y. Li, M. S. Hossain, & A. Ghoneim, HELOS: Heterogeneous load scheduling for electric vehicle-integrated microgrids. IEEE Transactions on Vehicular Technology, (2017), 66(7), 5785-5796.
[15]J. H. Teng, S. H. Liao, & C. K. Wen, Design of a fully decentralized controlled electric vehicle charger for mitigating charging impact on power grids. IEEE Transactions on Industry Applications, (2017), 53(2), 1497-1505.
[16]Y. Cao, O. Kaiwartya, R. Wang, T. Jiang, Y. Cao, N. Aslam, & G. Sexton, Toward Efficient, Scalable, and Coordinated On-the-Move EV Charging Management. IEEE Wireless Communications, (2017), 24(2), 66-73.
[17]Y. Cao, S. Yang, G. Min, X. Zhang, H. Song, O. Kaiwartya, & N. Aslam, A Cost-Efficient Communication Framework for Battery-Switch-Based Electric Vehicle Charging. IEEE Communications Magazine, (2017),55(5), 162-169.
[18]A. Echols, S. Mukherjee, M. Mickelsen, & Z. Pantic, Communication Infrastructure for Dynamic Wireless Charging of Electric Vehicles. In 2017 IEEE Wireless Communications and Networking Conference (WCNC), (2017), (pp. 1-6). IEEE.
[19]C. C., Huang & C. L. Lin, Wireless Power and Bidirectional Data Transfer Scheme for Battery Charger. IEEE Transactions on Power Electronics, (2017).
[20]Vanouni, M. & Lu, N. A reward allocation mechanism for thermostatically controlled loads participating in intra-hour ancillary services. IEEE Transactions on Smart Grid, (2018), 9(5), 4209-4219.
[21]Lin, Y., Barooah, P., & Mathieu, J. L. Ancillary services through demand scheduling and control of commercial buildings. IEEE Transactions on Power Systems, (2017), 32(1), 186-197.
[22]Rahnama, S., Green, T., Lyhne, C. H., & Bendtsen, J. D. Industrial demand management providing ancillary services to the distribution grid: Experimental verification. IEEE Transactions on Control Systems Technology, (2017), 25(2), 485-495.
[23]Trovato, V., Teng, F., & Strbac, G. Role and benefits of flexible thermostatically controlled loads in future low-carbon systems. IEEE Transactions on Smart Grid, (2018), 9(5), 5067-5079.
[24]Qureshi, F. A. & Jones, C. N. Hierarchical control of building HVAC system for ancillary services provision. Energy and Buildings, (2018), 169, 216-227.
[25]S.-H. Hsu, "Vehicle route planning system." U.S. Patent Application No. 15/098,334.
[26]Y. Zhang, S. Song, Z. J. M. Shen, & C.Wu, Robust Shortest Path Problem with Distributional Uncertainty. IEEE Transactions on Intelligent Transportation Systems, (2017).
[27]M. H. Khooban, N. Vafamand, T. Niknam, T. Dragicevic, & F. Blaabjerg, Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model. IET Electric Power Applications, (2017), 11(5), 918-934.
[28]A. Ahmadian, M. Sedghi, & M. Aliakbar-Golkar, Fuzzy Load Modeling of Plug-in Electric Vehicles for Optimal Storage and DG Planning in Active Distribution Network. IEEE Transactions on Vehicular Technology, (2017), 66(5), 3622-3631.
[29]Hu, J., Cao, J., Chen, M. Z., Yu, J., Yao, J., Yang, S., & Yong, T. Load following of multiple heterogeneous TCL aggregators by centralized control. IEEE Transactions on Power Systems, (2017), 32(4), 3157-3167.
[30]Kleidaras, A., Kiprakis, A. E., & Thompson, J. S. Human in the loop heterogeneous modelling of thermostatically controlled loads for demand side management studies. Energy, (2018), 145, 754-769.
[31]B. Zhou, X. Liu, Y. Cao, C. Li, C. Y. Chung, & K. W. Chan, Optimal scheduling of virtual power plant with battery degradation cost. IET Generation, Transmission & Distribution, (2016), 10(3), 712-725.
[32]http://data-archive.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE594964
[33]https://transparency.entsoe.eu/generation/r2/dayAheadGenerationForecastWindAndSolar/show
[34]H. Akhavan-Hejazi, H. Mohsenian-Rad, & A. Nejat, Developing a test data set for electric vehicle applications in smart grid research. In 2014 IEEE 80th Vehicular Technology Conference (VTC Fall), 1-6.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *