帳號:guest(3.142.197.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:洪璽軒
作者(英文):Xi-Xuan Hong
論文名稱:摻雜銀粒子於染料敏化太陽能電池之特性研究
論文名稱(英文):Study of doping Ag paticle in dye-sensitized solar cell
指導教授:林育賢
指導教授(英文):Yu-Shyan Lin
口試委員:鄭岫盈
田禮嘉
口試委員(英文):Shiou-Ying Cheng
Li-Chia Tien
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610622001
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:69
關鍵詞:染料敏化太陽能電池光還原法二氧化鈦銀粒子
關鍵詞(英文):dye-sensitized solar cellphotoreductionTitanium(IV) oxideAg particle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本研究利用網印版印刷製作TiO2工作電極,並在製作好的TiO2工作電極上,利用光還原法還原銀粒子,添加適當的銀粒子在TiO2工作電極上時,能夠產生表面電漿共振造成局部電場,有利於提升工作電極可見光吸收,使得短路電流、開路電壓上升,整體效率提高。由實驗可得知,在Ag/TiO2還原條件為硝酸銀濃度3 Mm以及光照時間2分鐘時,搭配散射層及四氯化鈦後處理,能夠得到最佳元件。
而在材料分析方面,使用了XRD、FE-SEM、XPS、UV-Vis觀察結晶性、表面形貌、元素組成以及光吸收量,並與未參雜的P25-TiO2進行比較。元件分析方面則是使用EIS、IMVS/IMPS等來量測阻抗及電子傳遞情形。
In this study, the TiO2 working electrode was fabricated by screen printing method, and the silver particles were reduced by photoreduction on the prepared TiO2 working electrode. When the appropriate silver particles were added on the TiO2 working electrode, the surface plasma resonance was happened and generated localized electric field. The electric field is beneficial to increase the visible light absorption of the working electrode, so that the value of short-circuit current and the open circuit voltage rise, and the overall efficiency is improved. It can be seen from the experiment that when the Ag/TiO2 reduction condition is 3 mM of silver nitrate and 2 minutes of illumination time, the best component can be obtained by post-processing with the scattering layer and post-treatment TiCl4.
In terms of material analysis, XRD, FE-SEM, XPS, UV-Vis were used to observe crystallinity, surface morphology, elemental composition, and light absorption, and compared with undoped P25-TiO2. In terms of component analysis, EIS, IMVS/IMPS, etc. are used to measure impedance and electron transfer.
目錄
誌謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XIII
第一章 緒論 1
1-1前言 1
1-2研究動機 2
第二章 理論基礎與文獻回顧 5
2-1 太陽能電池發展簡介 5
2-2太陽能電池種類 6
2-2-1 矽基太陽能電池 6
2-2-2薄膜太陽能電池 7
2-2-3 有機與奈米太陽能電池 8
2-3染料敏化太陽能電池工作原理 10
2-4染料敏化太陽能電池結構 11
2-4-1基板 11
2-4-2 工作電極 12
2-4-3 散射層 13
2-4-4 光敏化染料 14
2-4-5 電解質 15
2-4-6 對電極 15
2-5 光還原法(photoreduction) 16
2-6 表面電漿共振效應(Surface plasmon resonance) 16
2-7 表面電漿共振效應於染敏太陽能電池的應用 17
第三章 實驗方法與設備 19
3-1 實驗儀器設備 19
3-1-1超純水系統(Ultrapure water purification system) 19
3-1-2加熱磁石攪拌器(Magnetic Stirrer) 19
3-1-3超音波震盪器(Ultrasonic cleaner) 19
3-1-4網印板(Screen Printer) 19
3-1-5烘箱(Oven) 20
3-1-6高溫爐管(High Temperature Tube Furnace) 20
3-1-7紫外光燈管(UV lamp) 20
3-1-8鑽孔機(Driller) 20
3-1-9熱壓機(Thermo Compressor) 20
3-2 測量儀器設備 21
3-2-1 X光繞射儀 ( X-ray Diffraction, XRD) 21
3-2-2場發射型掃描式電子顯微鏡(Field Emission of Scanning Electron Microscope, FE-SEM) 22
3-2-3太陽電池I-V量測系統(Solar cell I-V measurements) 23
3-2-4 三維表面輪廓儀(3D-Surface profiler) 24
3-2-5 紫外光-可見光光譜儀(UV-Vis spectrophotometer) 25
3-2-6 電化學阻抗頻譜(Electrochemical impedance spectroscopy, EIS) 26
3-2-7強度調制光電流/光電壓頻譜分析(Intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy, IMPS/IMVS) 27
3-3 實驗藥品 28
3-4 實驗流程 29
3-4-1工作電極漿料製備 29
3-4-2 散射層漿料製備 30
3-4-3 四氯化鈦前後處理製備緻密層製備 31
3-4-4工作電極製備方法 32
3-4-5參雜銀粒子之工作電極製備方法 32
3-4-5 染料製備方式與浸泡染料 33
3-4-6對電極製備 34
3-4-7 元件封裝 34
第四章 結果與討論 37
4-1 TiO2與Ag/ TiO2薄膜之XRD晶相分析 37
4-2 TiO2與Ag/ TiO2薄膜之FE-SEM分析 39
4-3 Ag/ TiO2之X射線光電子能譜(XPS) 47
4-4不同光照射時間對Ag/TiO2工作電極影響 49
4-4-1 不同光照射時間對Ag/TiO2工作電極分析 49
4-4-2 不同光照射時間對Ag/TiO2薄膜光吸收與染料吸附量分析 52
4-4-3 Ag/TiO2工作電極搭配散射層與四氯化鈦後處理之比較 55
4-5 元件強度調製光電流與光電壓頻譜分析 57
4-6 元件電化學阻抗頻譜分析 59
第五章 結論 63
參考文獻 67

[1] 經濟部能源局, "能源產業技術白皮書," 2016.
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, pp. 676-677, May 1954.
[3] 工業技術研究院綠能環境研究所, "染敏太陽能電池" 2017.
[4] 經濟部能源局, "能源指標查詢系統," 2017.
[5] REN21, Renewables 2017 global Status Report, 2017.06.17.
[6] 台灣電力公司, "電價成本," 2017.
[7] A. E. Becquerel, Comptes Rendus, 1839.
[8] C. E. Fritts, R. E. Day. Proc Am Assoc Adv Sci, 1883.
[9] US Department of energy, press release, “The History of Solar,” 2002.
[10] J. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6, "Phys Status Solidi Rapid Res Lett, vol. 10, pp. 583-586, Aug 2016.
[11] B. O'Regan and M. Gratzel, " A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,"Nature, vol. 353, pp. 737-740, Oct 1997.
[12] 綠色能量有限公司, "單晶矽,多晶矽與非晶矽的差別."
[13] The Renewable Energy Hub, "The different types of solar panel,".
[14] Dr. Tien-chang Lu, Advanced Nanophotonics Lab
[15] M. Gratzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, Nov 2001.
[16] Dr. K. R. Justin Thomas, Organic Materials lab.
[17] M材料世界網, "太陽電池用透明導電材料".
[18] 翁啟航, "太陽能電池," 東華書局, 2010.
[19] Chengzhi Luo, Xiaohui Ren, Zhigao Dai, Yupeng Zhang, Xiang Qi, and Chunxu Pan, "Present Perspectives of Advanced Characterization Techniques in TiO2-based Photocatalysts," ACS APPLIED MATERIALS & INTERFACES, vol. 9 pp. 23265, Jun 2017.
[20] S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, "Influence of scattering layers on efficiency of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 1176-1188, May 2006.
[21] Prof. Chih-Hung Tsai, Nano Energy Optoelectronics Laboratory.
[22] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, et al., "Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, Jul 1993.
[23] Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover†, Christian-H. Fischer, and M. Grätzel, "Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania," Inorg. Chem, vol. 38 (26), pp 6298–6305, Dec 1999.
[24] Md. K. Nazeeruddin, P. Péchy and M. Grätzel, "Efficient panchromatic sensitization of nanocrystallineTiO2 films by a black dye based on atrithiocyanato–ruthenium complex," Chem. Commun, vol. 0, pp. 1705-1706, Sep 1997.
[25] Youngju Lee, Song-Rim Jang, R. Vittala, Kang-Jin Kim, "Dinuclear Ru(II) dyes for improved performance of dye-sensitized TiO2 solar cells," New J. Chem, vol. 31, pp. 2120-2126, Aug 2007.
[26] Hagfeldt, Boschloo G, Sun L, Kloo L, Pettersson H, "Dye-sensitized solar cells," Chem Rev, vol. 110(11), pp. 6595-6663, Sep 2010.
[27] A. Hauch, A. Georg, "New Photoelectrochromic Device." Electrochimica Acta 46, vol. 13, pp. 2131-2136, Apr 2001.
[28] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I2," Sol. Energy Mater. Sol. Cells, vol. 63, pp. 267, Jul 2000.
[29] Z. Haoquan, Y.Weijie, W. Xiaoying , S. Runcang, "Research Progress of Nanosilver," Hans Journal of Nano technology, vol. 2, pp. 50-57, Jun 2012.
[30] H. Raether, "Surface Plasmons,"1988.
[31] Prof. K. R. Chen, Laborary for Electro-Optical Simulation.
[32] Mark I. Stockman, "Nanoplasmonics: The physics behind the applications," Physics Today, vol. 64(2), pp. 39, Feb 2011.
[33] L. G. Qin, D. Y. Liu, Y. Q. Zhang, "Comparison of two ways using Ag nanoparticles to improve the performance of dye-sensitized solar cells”, Electrochimica Acta," Vol.263, pp. 426-432, Feb 2018.
[34] H. Hu, J. Shen, X. Cao, H. Wang, H. Lv, Y. Zhang, W. Zhu, J. Zhao, C. Cui,"Photo-assisted deposition of Ag nanoparticles on branched TiO2 nanorod arrays for dye-sensitized solar cells with enhanced efficiency," J. Alloy. Comp, vol. 694, pp. 653-661, Feb 2017.
[35] N. Wang, W. Xiangjian, L. Miaomiao, W. Yunchuang and C. Yongsheng, "A–D–A small molecules for solution-processed organic photovoltaic cells," Chem. Commun, vol. 51, pp. 4936-4950, Jan 2015.
[36] M材料世界網, "太陽電池量測技術".
[37] Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews, vol. 248, pp. 1381-1389, Jul 2004.
[38] L. Y. Han, N. Koide, Y. Chiba, and T. Mitate, "Modeling of an equivalent circuit for dye-sensitized solar cells,"Applied Physics Letters, vol. 84, pp. 2433-2435, 2004.
[39] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, et al., "Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells," Progress in Photovoltaics, vol. 15, pp. 603-612, Nov 2007.
[40] K. Kim, G.W. Lee et al, "Improvement of electron transport by low-temperature chemically," Journal of Photochemistry and Photobiology A: Chemistry, vol. 204, pp. 144-147, May 2009.
[41] H. Y. Jung, I. S. Yeo, T. U. Kim, H. C. Ki, H. B. Gu, "Surface plasmon
resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells," Applied Surface Science, vol. 432(B), pp. 266-271, Feb 2018.
[42] M. M. Jiang, H. Y. Chen, B. H. Li, K. W. Liu, C. X. Shan, D. Z. Shen, "Hybrid quadrupolar resonances stimulated at short wavelengths using coupled plasmonic silver nanoparticle aggregation," J. Mater. Chem. C, vol. 2, pp. 56-63, 2014.
[43] Y. Xu, H. Zhang, X. Li, W. Wang, J. Li, "Ag-encapsulated Single-Crystalline Anatase TiO2 Nanoparticlephotoanodes for enhanced dye-sensitized solar cell performance," Journal of Alloys and Compounds, vol. 695, pp. 1104-1111, Feb 2017.
[44] M. S. Wu, S. R. Yang, "Post-treatment of porous titanium dioxide film with plasmonic compact layer as a photoanode for enhanced dye-sensitized solar cells," Journal of Alloys and Compounds, vol. 740, pp695-702, Apr 2018.
[45] K. Yan, Y. Qiu, W. Chen, M. Zhang, S. Yang, "A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells," Energy Environ. Sci., vol. 4(6), pp. 2168-2176, Jun 2011.

(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *