帳號:guest(3.16.47.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林易韋
作者(英文):Yi-Wei LIN
論文名稱:不同比例碲化汞對(鉛、汞、碲)複合物之顯微結構及熱電性質探討
論文名稱(英文):Thermoelectric Properties of (Pb,Hg,Te) Composites with Different HgTe Composition.
指導教授:吳慶成
指導教授(英文):Ching-Cherng Wu
口試委員:蔡漢彰
郭永綱
口試委員(英文):Han-Chang Tsai
Yung-Kang Kuo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610622004
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:90
關鍵詞:熱電材料直接焠火時效處理熱電優值
關鍵詞(英文):thermoelectric materialsdirect quenchaging treatmentthe figure of merit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏收藏:0
本研究以直接淬火法與時效熱處理法製備出(PbTe)1-x/(HgTe)x三元複合物,其中x分別為0.01、0.03、0.05以及0.07。使用X-ray粉末繞射(XRD)、光學顯微鏡(OM)、場發掃描式電子顯微鏡(FE-SEM)來分析各個複合物的成分組成與其微結構。熱電性值量測範圍包含電阻率、Seebeck係數以及熱傳導率,量測溫度範圍在50~300K之間,並計算其熱電優質ZT。

在顯微結構分析中發現,成分x=0.01, 0.03與0.05的樣品,在搖擺過程中,高熔點的PbTe事先析出,阻礙石英管內部的混合,導致此三種成分的下中上三段均無法搖擺均勻。在提高HgTe成分來降低熔點,以及提高搖擺溫度後,此現象得以改善,得到分散均勻的析出物。並藉由380°C的時效熱處理1、6、48小時,觀察到更多過飽和析出物的出現。

由熱電量測的分析結果,得知所有成分的樣品電阻率皆隨溫度上升而下降,為半導體特性,且Seebeck係數為正值,指出此材料為p-type半導體,也發現到經由時效熱處理的樣品,其Seebeck係數在室溫時比原型高出兩倍。熱傳導率因x=0.01, 0.03與0.05的樣品有較多析出物,造成較多聲子散射,導致熱傳導率比x=0.07小,但經由時效處理後,析出物的增加也些微的降低熱傳導率。

量測結果顯示,雖然時效的樣品有著Seebeck係數高和熱傳導率低的優點,但由於其電阻率過大,以致於ZT值不盡理想。x=0.01和0.03兩種成分的樣品,因擁有比較小的電阻率,在300K時可以得到最大的ZT值為0.14左右。
In this study, (PbTe)1-x/(HgTe)x (x=0.01, 0.03, 0.05, 0.07) composites were synthesized by direct quench and aging treatment. The composition and microstructure of these composites were analyzed by X-ray powder diffraction, optical microscope, scanning electron microscope. The thermoelectric properties of all samples were studied by means of thermal and electrical transport measurement in the temperature ranges 50 K to 300 K. Temperature dependence of resistivity, Seebeck coefficient and thermal conductivity of these samples were discussed.

From the microstructure analysis, revealed that samples of the first three compositions, do not mix very well. The XRD pattern of x=0.01 top part showed many small peaks in low angle. And the FESEM results indicated that the shape and dispersion of precipitates are different in three parts of samples. We presumed that PbTe, high melting point started to precipitate during the melting and shaking process. This phenomenon can be solved by increasing x composition to 0.07 to decrease the melting point and using higher temperature 900°C to melt. It came out that we got homogeneous dispersion of precipitates. And after the aging treatment process, many new from precipitates can be observed.

The resistivity decreases with increasing temperature for all samples, showing semiconducting properties. The Seebeck coefficient of all composites is positive, indicating these samples are p-type, and the biggest value is +450μV/K from the aging 6hr sample. Thermal conductivity increases with x increase and decreases with aging time due to form more grain boundaries.

The maximum figure of merit ZT was obtained as 0.14 in both samples x=0.01 and 0.03 at 300K because of lowest resistivity.
第一章 前言 1
第二章 基礎倫理與文獻回顧 7
第三章 實驗方法與步驟 23
第四章 實驗結果與討論 34
第五章 結論 84
[1] Tritt, T.M. and M. Subramanian, Thermoelectric materials, phenomena, and applications: a bird's eye view. MRS bulletin, 2006. 31(3): p. 188-198.
[2] ZT值轉換發電效率. Available from: http://www.acttr.com/tw.
[3] Quarez, E., et al., Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPb m SbTe2+ m. The Myth of Solid Solutions. Journal of the American Chemical Society, 2005. 127(25): p. 9177-9190.
[4] Poudeu, P.F., et al., High Thermoelectric Figure of Merit and Nanostructuring in Bulk p‐type Na1− xPbmSbyTem+ 2. Angewandte Chemie, 2006. 118(23): p. 3919-3923.
[5] Wu. D, Z.L., Zheng. F, Jin. L, Kanatzidis. M.G., He. J. , Understanding nanostructuring processes in thermoelectrics and their effects on lattice thermal conductivity. Adv. Mater, 2016: p. 2737-2743.
[6] He, J., et al., Microstructure‐Lattice Thermal Conductivity Correlation in Nanostructured PbTe0. 7S0. 3 Thermoelectric Materials. Advanced Functional Materials, 2010. 20(5): p. 764-772.
[7] Venkatasubramanian, R., Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Physical Review B, 2000. 61(4): p. 3091.
[8] Biswas, K., et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414.
[9] Callister, W.D. and D.G. Rethwisch, Materials science and engineering. Vol. 5. 2011: John wiley & sons NY.
[10] Dadda, J., et al., Evolution of phase segregation and eutectic structures in AgPb18SbTe20. physica status solidi (a), 2014. 211(6): p. 1276-1281.
[11] Liu, J., X. Wang, and L. Peng, Effect of annealing on thermoelectric properties of eutectic PbTe–Sb2Te3 composite with self-assembled lamellar structure. Intermetallics, 2013. 41: p. 63-69.
[12] 鮑宣維, 三種形式共晶複合物之顯微結構與熱電性值分析. 2016.
[13] Tomashyk, V., P. Feychuk, and L. Shcherbak, Ternary alloys based on II-VI semiconductor compounds. 2013: CRC Press.
[14] Ravich, Y.I., CRC Handbook of Thermoelectrics. CRC Press, New York, 1995: p. 67-73.
[15] 李雅明, 固態電子學. 2016: 五南.
[16] Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials. Nature materials, 2008. 7(2): p. 105.
[17] Demishev, S., et al., Thermopower in the hopping conductivity region: transition from Mott’s to Zvyagin’s formula. Journal of Experimental and Theoretical Physics Letters, 1998. 68(11): p. 842-847.
[18] Jonson, M. and G. Mahan, Mott's formula for the thermopower and the Wiedemann-Franz law. Physical Review B, 1980. 21(10): p. 4223.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *