帳號:guest(3.14.254.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:郭韋志
作者(英文):Wei-Chih Kuo
論文名稱:以水熱法合成硒化鎳化合物應用於染料敏化太陽能電池
論文名稱(英文):Synthesis of Nickel Selenide Compound By Hydrothermal Method For Dye-Sensitized Solar Cells
指導教授:林育賢
指導教授(英文):Yu-Shyan Lin
口試委員:鄭岫盈
黃家華
口試委員(英文):Shiou-Ying Cheng
Chia-Hua Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610622006
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:87
關鍵詞:染料敏化太陽能電池硒化鎳對電極石墨烯
關鍵詞(英文):dye-sensitized solar cellNickel Selenidecounter electrodegraphene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
本實驗使用網版印刷法製作工作電極與散射層。工作電極使用P25-TiO2,散射層使用P200-TiO2,得到最佳工作電極參數後搭配後處理再以4種硒化鎳對電極與Pt對電極進行比較。

以水熱法合成四種硒化鎳化合物,包含Ni0.85Se、Ni0.85Se/RGO、NiSe2、NiSe2/RGO,並研究添加石墨烯後對電極的催化活性、電荷轉移電阻的差異,期望提高染料敏化太陽能電池效率,取代傳統Pt對電極。

自製硒化鎳化合物呈奈米結構,提供許多活性位置,添加石墨烯具協同效應促進催化能力,降低電荷轉移電阻。
In this experiment, a working electrode and a scattering layer were preparation by screen printing method. P25-TiO2 was used for the working electrode, P200-TiO2 was used for the scattering layer, and find the best working electrode parameters. After the TiCl4 treatment, compared four nickel selenide counter electrodes with Pt counter electrode .

Four kinds of nickel selenide compounds were synthesized by hydrothermal method, including Ni0.85Se, Ni0.85Se/RGO, NiSe2, NiSe2/RGO, catalytic activity and charge transfer resistance of the counter electrode after adding graphene were studied. Expect to improve sensitized solar cell efficiency and replacing traditional Pt counter electrodes.

Homemade nickel selenide compound has a nanostructure and provides many active sites. The addition of graphene has a synergistic effect to promote the catalytic ability and reduce the charge transfer resistance.
第一章 緒論 1
1.1前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 太陽能電池發展介紹 3
2.2 太陽能電池材料種類 4
2.2.1 矽晶圓太陽能電池 5
2.2.2 化合物薄膜太陽能電池 6
2.3 染料敏化太陽能電池(DYE-SENSITIZED SOLAR CELLS) 7
2.4 染料敏化太陽能電池之工作原理及組成架構 8
2.4.1染料敏化太陽能電池基本結構 10
2.4.2 基板 10
2.4.3 工作電極 11
2.3.4 染料光敏劑(Ru complexes dyes) 12
2.4.4 電解質 14
2.4.5 對電極 15
2.5 硒化鎳(NICKEL SELENIDES) 16
2.6 氧化石墨烯 (GRAPHENE OXIDE, GO)與還原氧化石墨烯(REDUCED GRAPHENE OXIDE, RGO) 17
第三章 實驗方法與裝置 19
3.1 實驗儀器設備 19
3.1.1 超純水系統 (Ultrapure water purification system) 19
3.1.2 加熱磁石攪拌器 (Magnetic Stirrer) 19
3.1.3 超音波震盪器 (Ultrasonic Cleaner) 19
3.1.4網印版 (Screen Printer) 19
3.1.5 烘箱 (Oven) 19
3.1.6 高溫爐管 (High Temperature Tube Furnace) 20
3.1.7 微量滴管 (Micropipette) 20
3.1.8 旋轉塗佈機 (Spin Coater) 20
3.1.9 鑽孔機 (Driller) 20
3.1.10 熱壓機 (Thermo Compressor) 20
3.2 測量儀器設備 21
3.2.1 場發射掃描式電子顯微鏡(Field emission of scanning electron mircroscope, FE-SEM) 21
3.2.2 X光繞射儀(X-Ray diffraction, XRD) 22
3.2.3 太陽電池I-V量測系統(Solar cell I-V measurement) 23
3.2.4 紫外光-可見光譜(UV-Visible spectrophotometer) 25
3.2.5 三維表面輪廓儀(3D-Surface profiler) 26
3.2.6 拉曼光譜分析儀 (Raman Spectrometer) 26
3.2.7 電化學阻抗頻譜(Electrochemical impedance spectroscopy, EIS) 27
3.3實驗藥品 29
3.4 實驗流程 31
3.4.1 工作電極漿料製備 31
3.4.2 散射層漿料製備 32
3.4.3 四氯化鈦前處理緻密層製備 33
3.4.4 工作電極製備 34
3.4.5 四氯化鈦後處理製備 35
3.4.6 染料製備方法 35
3.4.7 Pt對電極製作 36
3.4.8 電池封裝 36
3.5 以水熱法合成硒化鎳化合物應用於對電極之製備 37
3.5.1 NiSe2與NiSe2/RGO製備 37
3.5.2 Ni0.85Se與Ni0.85Se/RGO製備 38
3.5.3 製備硒化鎳對電極方法 38
第四章 結果與討論 41
4.1 XRD晶相分析 41
4.1.1 工作電極與散射層 41
4.1.2 Ni0.85Se、Ni0.85Se/RGO晶相分析 43
4.1.3 NiSe2、NiSe2/RGO 晶相分析 44
4.2 工作電極與對電極FE-SEM表面分析 46
4.2.1 工作電極與散射層表面形貌 46
4.2.2對電極表面形貌 49
4.3 工作電極比較 55
4.3.1 不同層數工作電極比較 55
4.3.2 工作電極搭配散射層比較 56
4.3.3 工作電極有無四氯化鈦後處理比較 59
4.4 硒化鎳化合物對電極分析 63
4.4.1 拉曼光譜分析 63
4.4.2 硒化鎳與Pt對電極光伏特性 65
4.4.3 對電極交流阻抗頻譜分析 67
4.4.4 伏安循環法分析 69
4.4.5 XPS分析 71
第五章 結論 75
參考文獻 78
[1] B. O'regan & M .Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737-740, 1991
[2] 劉月蘭, “二氧化鈦散射層於染料敏化太陽能電池中之特性,” 國立東華大學材料科學與工程研究所碩士論文,2015.
[3] J. Jia, J. Wu, J. Dong, J. Lin, “Cobalt telluride/reduced graphene oxide using as high performance counter electrode for dye-sensitized solar cells,” Electrochimica Acta, vol. 185,pp. 184-189, 2015.
[4] 認識太陽能http://www.isu.edu.tw/upload/81201/41/news/postfile_7422.pdf
[5] H. Tsubomura, M. Matsumura,.Y. Nomura & T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell.” Nature, vol. 261, pp. 402-403, 1976.
[6] F. Bella, C. Gerbaldi, C. Barolob and M. Grätzel, “Aqueous dye-sensitized solar cells,” Chemical Society Reviews, vol. 44, pp. 3431-3473, 2015.
[7] A. Ali, S. L. Cheow, A.W. Azhari, K. Sopian, Saleem H. Zaidi, “H Enhancing crystalline silicon solar cell efficiency with SixGe1− x layers,” Results in physics, vol. 77, pp. 225-232, 2017.
[8] K. Wakisaka, K. Sayama, M. Tanaka, M. Isomura, H. Haku, S. Kiyama, S. Tsuda, “Development of high-efficiency a-Si solar cell submodule with a size of 30 cm× 40 cm,” Solar energy materials and solar cells, vol. 49, pp. 121-125, 1997.
[9] B. A. Ahmed, I. H. Shallal, F. I. mustafa AL. Attar, “Physical properties of CdS/CdTe/CIGS thin films for solar cell application,” In: Journal of Physics: Conference Series. IOP Publishing, vol. 1032, pp. 012022, 2018.
[10] S. Saravanana, T. K. Tejaa, R. S. Dubeya, S. Kalainathan, “Design and analysis of GaAs thin film solar cell using an efficient light trapping bottom structure,” Materials Today: Proceedings, pp. 2463-2467, 2016.
[11] A. Yella. H. Wei. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,” science, vol. 334. pp. 629-634, 2011.
[12] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. i. Fujisawab and M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes,” Chemical Communications , vol. 51, pp. 15894-15897, 2015.
[13] J. Junger , C. Großerhode , J. L. Storck , S. Kohn, “Influence of graphite-coating methods on the DSSC performance,” Optik, vol. 174, pp. 40-45, 2018.
[14] J. H. Yum, E. Baranoff, S. Wenger, Md. K. Nazeeruddin and M. Grätzel, “Panchromatic engineering for dye-sensitized solar cells.” Energy & Environmental Science, vol. 4, pp. 842-857, 2011
[15] C. Sima, C. Grigoriu, S. Antohe, “Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO, “ Thin Solid Films, pp. 595-597, 2010.
[16] C. C. Plá Cid, E. R. Spada, M. L. Sartorelli, “Effect of the cathodic polarization on structural and morphological proprieties of FTO and ITO thin films,” Applied Surface Science, vol. 273, pp. 603-606, 2013.
[17] H. M. Yatesa, P. Evansa , D. W. Sheel, “The influence of F-doping in SnO2 thin films,” Physics Procedia, pp. 159-166, 2013.
[18] C. Sahoo, A. K. Gupta, A. Pal, “Photocatalytic degradation of Methyl Red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2,” Desalination, vol. 181, pp. 91-100, 2005.
[19] J. Bisquert, “Theory of the impedance of electron diffusion and recombination in a thin layer,” The Journal of Physical Chemistry B, vol. 106.2, pp. 325-333, 2002.
[20] W. M. Campbell, M. Kenneth, et al, “Highly efficient porphyrin sensitizers for dye-sensitized solar cells,” The Journal of Physical Chemistry C, vol. 111, pp. 11760-11762, 2007.
[21] Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coordination chemistry reviews, vol. 248, pp. 1381-1389, 2004.
[22] Md. K. Nazeeruddin, P. Pechy and M. Grätzel, “Efficient panchromatic sensitization of nanocrystallineTiO2 films by a black dye based on atrithiocyanato–ruthenium complex,” Chemical Communications, pp. 1705-1706, 1997.
[23] J. N. Clifford, E. Palomares,, Md. K. Nazeeruddin, “Dye dependent regeneration dynamics in dye sensitized nanocrystalline solar cells: evidence for the formation of a ruthenium bipyridyl cation/iodide intermediate,” The Journal of Physical Chemistry C, vol. 111, pp. 6561-6567, 2007.
[24] M. P. Laurence, “Dye-sensitized nanocrystalline solar cells,” Physical Chemistry Chemical Physics, vol. 9, pp. 2630-2642, 2007.
[25] A. Hauch , A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells,” Electrochimica Acta, vol. 46, pp. 3457-3466, 2001.
[26] C. Wang, F. Meng, M. Wu, X. Lin, “A low-cost bio-inspired integrated carbon counter electrode for high conversion efficiency dye-sensitized solar cells,” Physical Chemistry Chemical Physics, vol. 15, pp. 14182-14187, 2013.
[27] J. Xu, M. Li, L. Wu, Y. Sun, L. Zhu, S. Gu, L .Liu, Z. Bai, D. Fang, W. Xu, “A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells, “ Journal of Power Sources, vol. 257, pp. 230-236, 2014
[28] G. R. Li, J. Song, G. L. Pan and X. P. Gao. “Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells,” Energy & Environmental Science, vol .pp. 41680-1683, 2011.
[29] J. Jin, X. Zhang and T. He, “Self-assembled CoS2 nanocrystal film as an efficient counter electrode for dye-sensitized solar cells,” The Journal of Physical Chemistry C, vol. 118, pp. 24877-24883, 2014.
[30] Z. Zhuang, Q. Peng, J. Zhuang, X. Wang, and Y. Li, ”Controlled hydrothermal synthesis and structural characterization of a nickel selenide series,” Chemistry–A European Journal, vol. 12, pp. 211-217, 2006.
[31] F. Gong, H. Wang, X. Xu, G. Zhou, and Z. S. Wang, “In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 134, pp. 10953-10958, 2012.
[32] F. Gong, X. Xu, Z. Li, G. Zhou and Z. S. Wang, “NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells,” Chemical Communications, vol. 49, pp. 1437-1439, 2013.
[33] L. G. Guex, B. Sacchi, K. F. Peuvot, R. L. Andersson, “Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry,” Nanoscale, vol. 9, pp. 9562-9571, 2017.
[34] Z. Z. Yang, Q. B. Zheng, H. X. Qiu, J. Li, J. H. Yang, “A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst,” New Carbon Materials, vol. 30, pp. 41-47, 2015.
[35] I. K. Moon, J. Lee, R. S. Ruoff & H. Lee,”Reduced graphene oxide by chemical graphitization.” Nature communications, vol. 1:73, pp1-6. 2010.
[36] M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, & J. M. D. Tascon, “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions.” The Journal of Physical Chemistry C, vol. 114. pp. 6426-6432. 2010.
[37] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia & R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.” carbon, vol. 45, pp. 1558-1565. 2007.
[38] J. Dong, J. Wu, J. Jia, J. Ge, Q. Bao, C. Wang, L. Fan, “A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells,” Applied Surface Science, vol. 401, pp. 1-6, 2017.
[39] J. Dong, J. Wu, J. Jia, L. Fan, J. Lin,” “Nickel selenide/reduced graphene oxide nanocomposite as counter electrode for high efficient dye-sensitized solar cells,” Journal of colloid and interface science, vol. 498, pp. 217-222, 2017.
[40] X. Zhang, T. Z. Jing, S. Q. Guo, G. D . Gao and L. Liu, “Synthesis of NiSe2/reduced graphene oxide crystalline materials and their efficient electrocatalytic activity in dye-sensitized solar cells,” RSC Advances, vol. 4, pp. 50312-50317, 2014.
[41] 施彥辰,”多層級結構之二氧化鈦薄膜應用於染料敏化太陽能電池的製備與分析,” 國立中山大學光電工程學系碩士論文, 2017.
[42] X. Z, J. Bai, B. Yang, G. Li and L. Liu, “Self-assembled mesoporous Ni0.85Se spheres as high performance counter cells of dye-sensitized solar cells,” RSC Advances, vol. 6, pp. 58925-58932, 2016.
[43] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pe´chy and M. Gra¨tzel, ”Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells,” Progress in photovoltaics: research and applications, vol. 15, pp. 603-612, 2007.
[44] K. Kim, G. W. Lee, K. Yoo, D. Y. Kim, J. K. Kim, N. G. Park, “Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell,” Journal of Photochemistry and Photobiology, vol. 204, pp. 144-147, 2009.
[45] H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D. R. Jung, B. Park, “The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell,” Current Applied Physics, vol. 12, pp. 737-741, 2012.
[46] P. M. Sommeling,B. C. O’Regan, “Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells, “ The Journal of Physical Chemistry B, vol. 110, pp. 19191-19197, 2006.
[47] N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells,” The Journal of Physical Chemistry B, vol. 104, pp. 8989-8994, 2000.
[48] X. Zhang, S. Guo, M. Zhen, G. Gao, L. Liu, “Morphology–property effect in electrocatalysis based on Ni1-χSe@ graphene series with specific stoichiometric Ratio,” Journal of The Electrochemical Society, vol. 162, pp. H774-H779, 2015.
[49] A. Jabbar, G. Yasin, “Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance,” RSC Advances, vol. 7, pp. 31100-31109, 2017.
[50] S. Gurunathan, J. W. Han, A. A. Dayem, “Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa,” International journal of nanomedicine, vol.7, pp.5901-5914, 2012.
[51] S. C. Lee, S. Some, S. W. Kim, S. J. Kim, Jungmok Seo, Jooho Le, “Efficient direct reduction of graphene oxide by silicon substrate,” Scientific reports, vol. 5, pp. 12306, 2015.
[52] Y. Liao, K. Pan, Q. J. Pan, G. F Wang, W. Zhou, H. Fu, “In situ synthesis of a NiS/Ni3S2 nanorod composite array on Ni foil as a FTO-free counter electrode for dye-sensitized solar cells,” Nanoscale, vol. 00, pp.1-3, 2012.
[53] Y. Lou, W. Zhao, C. Li, H. Huang, T. Bai, C. Chen, C. Liang, Z. Shi, D. Zhang, X. B. Chen, and S. Feng, “Application of Cu3InSnSe5 heteronanostructures as counter electrodes for dye-sensitized solar cells,” ACS applied materials & interfaces, vol. 9, pp. 18046-18053, 2017.
[54] 邱偉傑, “高效能染料敏化太能陽電池特性研究(>9%),” 國立東華大學材料科學與工程學系碩士論文, 2016.
[55] X. Zhang, H. Zhang, X. Wang and X. Zhou, “Enhanced electrocatalytic performance of nickel diselenide grown on graphene toward the reduction of triiodide redox couples,” RSC Advances, vol. 8, pp. 28131-28138. 2018.
[56] J. Jia, J. Wu, Y. Tu, J. Huo, M. Zheng & J. Lin, “Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells,” Journal of Alloys and Compounds, vol. 640, pp. 29-33. 2015.
[57] K. Dave, K. Park, H. & M. Dhayal, “Two-step process for programmable removal of oxygen functionalities of graphene oxide: functional, structural and electrical characteristics,”RSC Advances, vol.5(116), pp.95657-95665.2015.
[58] Y. Bo, et al, “Nanocrystalline Ni0.85Se as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction,” Electrochimica Acta, vol. 242, pp. 25-30. 2017.
[59] T,Xue, et al, “Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting, ” Nanoscale, vol.10-19, pp. 9276-9285. 2018.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *