帳號:guest(3.144.93.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蔡既瑋
作者(英文):Chi-Wei Tsai
論文名稱:(石墨烯/碲化鉛)複合物之熱電性質探討
論文名稱(英文):Thermoelectric Properties of (Graphene/PbTe) Composites
指導教授:吳慶成
指導教授(英文):Ching-Cherng Wu
口試委員:郭永綱
蔡漢彰
口試委員(英文):Yung-Kang Kuo
Han-Chang Tsai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610622008
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:74
關鍵詞:熱電材料直接焠火粉末冶金石墨烯熱電優值(石墨烯/碲化鉛)複合物
關鍵詞(英文):Thermoelectric materialsDirect quenchingPowder metallurgyGrapheneThe figure of meritGraphene/PbTe composites
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
本研究是以高溫熔融搖擺搭配直接淬火(Direct Quench)的方式製備出碲化鉛,再加入不同比例之石墨烯後利用冷壓製程合成(Graphene/PbTe)複合物,摻入石墨烯的比例為0、0.1、1、3、5、10wt%,後使用X-ray繞射(XRD)、光學顯微鏡(OM)、場發式掃描式電子顯微鏡(FE-SEM)來分析其成份組成及顯微結構。熱電性質量測包含電阻率、Seebeck係數和熱傳導率隨溫度變化,量測溫度範圍在60~300 K,並利用上述的數據計算其熱電優值ZT。
摻入石墨烯之PbTe複合物在電阻率方面呈現半導體特性,且隨著石墨烯成分增加而減少,最低之電阻率為加入10wt%樣品的0.006ohm-cm;在Seebeck係數方面量所有加入石墨烯的樣品皆為p-type,其中,石墨烯比例0.1wt%的樣品有最佳的Seebeck係數達到306 μV/K;在熱傳導率方面所有樣品皆隨溫度上升而下降;由上述熱電性質計算過後,最佳的熱電優值為加入石墨烯0.1wt%的樣品,歸因於其具有較高的Seebeck係數及較低的熱導率,在300 K時有最高的ZT值達到0.03。
摻入石墨烯樣品的ZT值與未摻雜的樣品相比並未得到改善,這是因為其seebeck係數及熱導率方面表現不佳,儘管加入石墨烯後電阻率有明顯改善,但仍無法抵銷seebeck係數及熱導率所造成的影響。
關鍵字:熱電材料、直接淬火、粉末冶金、石墨烯、熱電優值
In this study, Graphene/PbTe composites with various Graphene composition 0、0.1、1、3、5 and 10wt% were prepared by cold pressing and annealing. The composition and microstructure of these composites were examined by optical microscope(OM), X-ray diffraction(XRD), field emission scanning electron microscope(FE-SEM) and energy dispersive X-ray spectroscopy(EDS). The thermoelectric properties for these composites were studied by means of thermal and electrical transport measurement in the temperature range between 60 K and 300 K. The temperature dependence of the thermoelectric properties of Graphene/PbTe composites were discussed.
The electrical resistivity of Graphene/PbTe composites are decreased with increasing temperature showing semiconducting properties. And the electrical resistivity also decreased with increasing Graphene content. The lowest value of resistivity is 0.006ohm-cm for the PbTe sample with 10wt% Graphene at 300K . The seebeck coefficient of all the Graphene/PbTe composites are positive , showing p-type conduct and the highest seebeck coefficient(306uV/K) are obtained at 300K for Graphene/PbTe composites with 0.1wt% Graphene . The thermal conductivity of these composites decreased with increasing temperature. The Graphene/PbTe composite with 0.1wt Graphene exhibits the maximum ZT=0.03 at 300 K which was attributed to its highest seebeck coefficient and lowest thermal conductivity.
The thermoelectric properties of Graphene/PbTe composites were not enhanced due to their low Seebeck coefficient and high thermal conductivity, although the resistivity was significantly improved after the addition of graphene.

目錄 1
圖目錄 3
表目錄 5
第一章 緒論 6
1-1前言 6
1-2研究動機 8
第二章 理論基礎與文獻回顧 10
2-1 材料基本特性 10
2-1-1 PbTe基本特性 10
2-1-2石墨烯 基本特性 11
2-2 熱電理論 12
2-2-1 Seebeck效應 12
2-2-2 Peltier效應 13
2-2-3 Thomson效應 14
2-3 熱電材料物理性質 15
2-3-1 電阻率 15
2-3-2 Seebeck係數 16
2-3-3 熱傳導現象 18
2-3-3-1 電子對熱傳導的影響 19
2-3-3-2 聲子對熱傳導的影響 19
第三章 實驗方法與步驟 23
3-1 實驗方法 23
3-2 實驗步驟 27
3-2-1 石英管之前處理 27
3-2-2 元素秤重及封管 28
3-2-3 高溫搖擺即直接淬火 30
3-2-4 冷壓退火 32
3-3 樣品製備與量測 34
3-3-1 電阻率樣品製備與量測 34
3-3-2 熱傳導率與Seebeck係數樣品製作及量測 35
3-3-3 熱電量測系統及控制程式 36
3-4 顯微結構與成分分析 39
3-4-1 XRD(X-ray diffractometer) 39
3-4-2 場發射型掃描式電子顯微鏡(FE-SEM) 39
第四章 實驗結果與討論 40
4-1 顯微結構與成分分析 41
4-1-1 XRD分析 41
4-1-2 光學顯微鏡分析 43
4-3-3 場發射掃描電子顯微鏡分析 53
4-2 熱電性質量測分析 65
4-2-1 電阻率 65
4-2-2 Seebeck係數 67
4-2-3 熱傳導率 68
4-2-4 熱電優值ZT 69
第五章 結論 71
參考文獻 73
[1] K. Biswas et al., "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, vol. 489, no. 7416, p. 414, 2012.
[2] B. Tsai and K. Cheng, "Thermoelectric properties of the difference between Zn3. 9 Sb3 and Zn4 Sb3," in Innovation in Design, Communication and Engineering: Proceedings of the 2014 3rd International Conference on Innovation, Communication and Engineering (ICICE 2014), Guiyang, Guizhou, PR China, October 17-22, 2014, 2015, p. 33: CRC Press.
[3] Y. Zhang et al., "Enhanced thermoelectric performance of nanostructured CNTs/BiSbTe bulk composite from rapid pressure-quenching induced multi-scale microstructure," Journal of Materiomics, vol. 2, no. 4, pp. 316-323, 2016.
[4] M. K. Fuccillo, M. E. Charles, Y. S. Hor, S. Jia, and R. J. J. S. S. C. Cava, "Low temperature thermoelectric properties of Bi2− xSbxTeSe2 crystals near the n–p crossover," Solid State Communications, vol. 152, no. 14, pp. 1208-1211, 2012.
[5] W.-S. Cho, S.-W. Choi, K. J. M. S. Park, and E. B, "Microstructure and thermoelectric properties of p-type Fe0. 9Mn0. 1Si2 compounds prepared by pressureless sintering," Materials Science and Engineering: B, vol. 68, no. 2, pp. 116-122, 1999.
[6] F. Wu, W. Wang, X. Hu, and M. J. P. i. N. S. M. I. Tang, "Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing," Progress in Natural Science-Materials International, vol. 27, no. 2, pp. 203-207, 2017.
[7] L. Yang et al., "n-type Bi-doped PbTe nanocubes with enhanced thermoelectric performance," Nano Energy, vol. 31, pp. 105-112, 2017.
[8] J. He, S. N. Girard, M. G. Kanatzidis, and V. P. J. A. F. M. Dravid, "Microstructure‐lattice thermal conductivity correlation in nanostructured PbTe0. 7S0. 3 thermoelectric Materials," Advanced Functional Material, vol. 20, no. 5, pp. 764-772, 2010.
[9] D. Wu, L. D. Zhao, F. Zheng, L. Jin, M. G. Kanatzidis, and J. J. A. m. He, "Understanding nanostructuring processes in thermoelectrics and their effects on lattice thermal conductivity," Advanced Material, vol. 28, no. 14, pp. 2737-2743, 2016.
[10] M. Yang et al., "High-pressure synthesis and thermoelectric performance of tellurium doped with bismuth," Journal of Materials Science, vol. 52, no. 17, pp. 10526-10532, 2017.
[11] X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, and G. J. N. R. M. Shi, Graphene-based smart materials (no. 9). Nature Reviews Materials, 2017, p. 17046.
[12] K. Ahmad, W. Pan, and H. J. R. A. Wu, "High performance alumina based graphene nanocomposites with novel electrical and dielectric properties," RSC Advances, vol. 5, no. 42, pp. 33607-33614, 2015.
[13] H. Ju, J. J. J. o. A. Kim, and Compounds, "Preparation and structure dependent thermoelectric properties of nanostructured bulk bismuth telluride with graphene," Journal of Alloys and Compounds, vol. 664, pp. 639-647, 2016.
[14] K. Ahmad, C. Wan, M. A. Al-Eshaikh, and A. N. Kadachi, "Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites," Applied Surface Science, vol. 474, pp. 2-8, 2019/04/30/ 2019.
[15] B. A. E. Y.I.Ravich, and I.A.Smirnov, semiconductoring lead chalcogenides. Springer, 1970.
[16] R. C. Weast, M. J. Astle, and W. H. Beyer, CRC handbook of chemistry and physics. CRC press Boca Raton, FL, 1988.
[17] 林志堅, "石墨烯與二維材料介紹."
[18] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. J. n. Kim, "A roadmap for graphene," Nature, vol. 490, no. 7419, p. 192, 2012.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *