帳號:guest(18.191.239.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:姚欣儀
作者(英文):Xin-Yi Yao
論文名稱:摩擦攪拌製程及後續冷軋對鎂鋰合金機械性質之影響
論文名稱(英文):Effect of friction stir processing and subsequent cold rolling on mechanical properties of Mg-Li alloy
指導教授:王建義
指導教授(英文):Jian-Yih Wang
口試委員:王誠佑
陳俊良
口試委員(英文):Cheng-Yu Wang
Chun-Liang Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610622015
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:69
關鍵詞:鎂鋰合金摩擦攪拌製程冷軋延機械性質顯微組織
關鍵詞(英文):magnesium-lithium alloyfriction stir processcold rollingmechanical propertiesmicrostructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
鎂鋰合金有良好的室溫成型性,但因為添加鋰元素使強度下降,因此本研究採用LZ91與LAZ941合金作為研究對象,進行不同旋轉速度之摩擦攪拌製程(FSP)與FSP之後再進行冷加工,探討經過不同製程處理其機械性質與顯微組織的影響。經摩擦攪拌製程後晶粒均有明顯細化, FSP-LZ91 100rpm有最小的晶粒尺寸為8.9μm,是由於轉速較低因此摩擦所產生的熱輸入較低的關係,其在拉伸結果也顯示有最佳的降伏強度與最大抗拉強度,分別為137.6MPa和150.8MPa,這與Hall-Petch方程相符合,晶粒尺寸越小降伏強度越大。而FSP-LAZ941則與LZ91有相反的現象,在300rpm時則有最佳的強度,其降伏強度與最大抗拉強度分別為187.7MPa和221.0MPa,是由於θ-Li2MgAl相出現的關係。在FSP經過軋延後,因為大量的塑性變形,使合金有明顯晶粒細化與加工硬化現象,所以材料強度均大幅提升,但因為冷加工關係導致延伸率下降,FSP-LAZ941 300rpm CR40%為最佳,硬度值為89.9HV,降伏強度為229.6MPa,最大抗拉強度為298.5MPa。從SEM破斷面分析,可知摩擦攪拌製程後,呈現許多小蜂窩狀組織。
Magnesium-lithium alloy has good room temperature formability, but its strength is low due to lithium addition. In this study, the mechanical properties and microstructures of LZ91 and LAZ941 alloys after the friction stir process (FSP) with different rotational speeds and subsequent cold rolling on FSP were investigate. The results show that the grains are remarkably refined after FSP. The minimum grain size of FSP-LZ91 100rpm is 8.9μm, which is due to the lower heat input at a lower rotation speed. It also displays the best yield and ultimate tensile strengths, which are 137.6 MPa and 150.8 MPa, respectively. It is consistent with the Hall-Petch equation, the smaller grain size the greater yield strength. On the other hand, the FSP-LAZ941 has the contrary phenomenon compare with the LZ91, and has the best strength after FSP at a higher rotation speed of 300 rpm, and its yield strength and ultimate tensile strength were 187.7MPa 221.0MPa, respectively. The reason was considered that the precipitation of θ-Li2MgAl phase occur during the FSP at higher rotation speed. After the subsequent cold rolling on FSP, the alloys show the obvious grain refinement and the work hardening due to the large amount of plastic deformation. The mechanical properties were improved, but the elongation decreased. FSP-LAZ941 300rpm following CR40% cold rolling displays optimal properties. The hardness was 89.9HV; yield strength and ultimate tensile strength were 229.6MPa and 298.5MPa, respectively. From the SEM fracture analysis results, the fracture surfaces show the dimple structures.
摘要 I
Abstract II
總目錄 III
圖目錄 V
表目錄 VIII

第一章 緒論 1
1-1前言 1
1-2研究動機 3

第二章 文獻回顧 5
2-1鎂合金介紹 5
2-2添加合金元素對鎂合金之影響 6
2-2-1鋰(Li)元素 7
2-2-2鋁(Al)元素 7
2-2-3鋅(Zn)元素 8
2-3鎂合金的強化 8
2-4摩擦攪拌製程(Friction stir processing) 10

第三章 實驗方法及實驗步驟 23
3-1實驗設備 23
3-2材料製備 23
3-2-1鎂合金熔煉 23
3-2-1-1 LZ91熔煉及擠製製程 23
3-2-1-2 LAZ941熔煉及熱軋延製程 24
3-2-2感應耦合電漿放射光譜儀(ICP-OES) 24
3-2-3摩擦攪拌製程(Friction Stir Processing, FSP) 24
3-2-4冷軋延製程(Cold Rolling) 24
3-3顯微組織觀察 25
3-3-1光學顯微鏡分析(Optical microscope, OM) 25
3-3-2掃描式電子顯微鏡(Scanning electron microscope, SEM) 26
3-4結構分析 26
3-4-1 X-ray晶體結構分析 26
3-5機械性質測試 26
3-5-1維克氏硬度測試 26
3-5-2拉伸測試 27

第四章 實驗結果與討論 39
4-1 擠型材LZ91、FSP-LZ91及FSP-LZ91經冷軋延 39
4-1-1擠型材LZ91與FSP-LZ91 39
4-1-1-1 X-ray繞射圖譜分析 39
4-1-1-2 顯微組織觀察 39
4-1-1-3機械性質測試 39
4-1-2 FSP-LZ91經冷軋延 41
4-1-2-1 X-ray繞射圖譜分析 41
4-1-2-2顯微組織觀察 41
4-1-2-3機械性質測試 41
4-2 熱軋材LAZ941、FSP-LAZ941及FSP-LAZ941經冷軋延 43
4-2-1熱軋材LAZ941與FSP-LAZ941 43
4-2-1-1 X-ray繞射圖譜分析 43
4-2-1-2顯微組織觀察 43
4-2-1-3機械性質測試 44
4-2-2 FSP-LAZ941經冷軋延 45
4-2-2-1 X-ray繞射圖譜分析 45
4-2-2-2顯微組織觀察 45
4-2-2-3機械性質測試 45

第五章 結論 63
5-1擠型材LZ91、FSP-LZ91及FSP-LZ91經冷軋延 63
5-2熱軋材LAZ941、FSP-LAZ941及FSP-LAZ941經冷軋延 63

參考文獻 65
[1] 廖銘枝、陳元隆,「鎂合金表面化學處理劑之應用演進」,鎂合金產業專欄,2004年2月24期。
[2] 蔡辛甫,「採用鎂合金在汽車工業之應用」,鎂合金產業通訊,2006年2月32期。
[3] William J.Joost, Paul E. Krayjewski, Towards magnesium alloys for high-volume automotive applications. Scripta Materialia. 128(2017) 107-112
[4] H.Westengen, H.M.M.A. Rashed, Magnesium Alloys : Properties and Applications. Reference Module in Materials Science and Materials Engineering. 2016
[5] B.L Mordlike, T Ebert, Magnesium : Properties-applications-potential. Materials Science and Engineering : A. 302(2001) 37-45
[6] J.Deetz. The Use of Wrought Magnesium in Bicycles. JOM. 57(2005) 50-53
[7] H.Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, Development, Processing and Applications Range of Magnesium Lithium Alloys. Materials Science Forum. 350-351(2000)31-42
[8] H. Takuda, S. Kiuchi, T. Tsukada, K. Kubota, N. Hatta, Effect of strain rate on deformation behavior of a Mg-8.5Li-1Zn alloy sheet at room temperature. Materials Science and Engineering. 271(1999) 251-256
[9] S.R. Agnew, M.H. Yoo, C.N, Tome. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Materialia. 49(2001) 4277-4289
[10] Jenn-Ming Song, Tien-XiangWen, Jian-Yih Wang, Vibration fracture properties of a lightweight Mg-Li-Zn alloy. Scripta Materialia. 56(2007) 529-532
[11] R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, Scripta Mater. 42(2000) 163-168.
[12] G.Lin, Z. Ma, G. Wei, T. Xu, X. Zhang, Y. Yang, W. Xie, X.Peng, Microstruceure, tensile properties and corrosion behavior of friction stir processed Mg-9Li-1Zn alloy. Journal of Materials Processing Technology. 267(2019) 393-402
[13] Renlong Xin, Xuan Zheng, Zhe Liu, Dejia Liu, Risheng Qiu, Zeyao Li, Qing Liu, Microstrucrure and texture evolution of an Mg-Gd-Y-Nd-Zr alloy during friction stir processing. Journal of Alloys and Compounds. 659(2016) 51-59
[14] W.Woo, Z. Feng, B.Clausen, S.A. David, In situ neutron diffraction analyses of temperature and stresses during friction stir processing of Mg-3Al-1Zn magnesium alloy. Materials Letters. 195(2017) 284-287
[15] 王建義,「鎂合金板材之壓型加工技術」,工業材料雜誌170期,(2001)132-136
[16] 吳仕偉,「輕金屬應用汽車、電子產業、環保、省能、輕量化仕國際優勢」,機械技術雜誌222期,(2003) 60-64
[17] 鍾仕豪,「超輕鎂鋰合金的拉伸與疲勞特性研究」,國立中央大學機械工程學系,碩士論文,2011年6月
[18] 翁仁斌,「鎂合金固相回收之研究」,工業材料雜誌266期,2009年2月
[19] 日本鎂合金協會,鎂合金基礎知識
[20] 黃繼遠,莫文偉,鄭銘章,「電磁波VS電磁波遮蔽材」,科學發展362期,(2003)18-21
[21] 楊智超,「鎂合金材料特性及新製程發展」,工業材料雜誌152期,(1999) 72-80
[22] 張永耀,「金屬熔銲學」,徐氏基金會,1976年 134-170
[23] 蔡幸甫,「鎂合金產業技術及市場發展趨勢專題調查」,工研院產業經濟與資訊服務中心科技專案成果,2001年
[24] Zhikun Qu,Ruizhi Wu, Haibo Zhan, Milin Zhang, The solution and room temperature aging behavior of Mg-9Li-xAl(x=3,6) alloys. Journal of Alloys andCompounds , 536 (2012) 145-149
[25] Muhammad Shahzad, Lothar Waganer, Microstructure development during extrusion in a wrought Mg-Zn-Zr alloy. Scripta Mater, 60(2009) 536-538
[26] L. Shepeleva, M. Bamberger, Microstructure of high pressure die cast AZ91D modified with Ca and Ce. Materials Science and Engineering : A, 425(2006) 312-317
[27] S Kleiner, O Beffort, P.J Uggowitzer , Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state. Scripta Materialia, 51(2004) 405-410
[28] M.Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojyima, The effect of thermal exposure on the interface and mechanical properties of Al18B4O33w/AZ91 magnesium matrix composite. Materials Science and Engineering : A, 372(2004) 66-74
[29] Hanwu Dong, Fusheng Pan, Bin Jiang, Ying Zeng, Evolution of microstructure and mechanical properties of a duplex Mg-Li alloy under extrusion with an increasing ratio. Materials & Design, 57(2014) 121-127
[30] Tincai Xu, Xiaodong Peng, Junwei Jiang, Guobing Wei, Bao Zhang, Microstructure and Mechanical properties of Superlight Mg-Li-Al-Zn Wrought Alloy. Rare Meta Materials and Engineering, 43(2014) 1815-1820
[31] Ying-Nan Lin, Horng-Yu Wu, Geng-Zhong Zhou, Chui-Hung Chiu, Shyong Lee, Mechanical and anisotropic behavior of Mg-Li-Zn alloy thin sheets. Materials & Desidgn, 29(2008) 2061-2065
[32] ASM「Metallography, Structure and Phase Diagram」Metals Handbook 8th Edition, Vol.8 p.316
[33] S.K. Wu, J.Y. wang, K.C. Lin, H.Y. Bor, Effect of cold rolling and solid solution treatment on mechanical properties of β-phase Mg-14.3Li-0.8Zn alloy. Materials Science and Engineering : A, 552(2012) 76-80
[34]Ruizhi Wu, Xuyin Guo, Dayong Li, Ageing behavior of Mg-9Li-6Al-xY(x=0、0.5、2) alloys. Journal of Alloys and Compounds, 616(2014) 408-412
[35] Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ, GB Patent Application NO.9125978.8, December 1991
[36] Marek Stanisław Węglowski, Friction stir processing – State of the art. Archives of civil and mechanical engineering, 18 (2018) 114-129
[37] M.Ebrahimi, M.A.Par, Twenty-year uninterrupted endeavor of friction stir processing by focusing on copper and its alloys. Journal of Alloys and Compounds, 791 (2019) 1074-1090
[38] Ranjit Bauri, Devinder Yadav, Chapter 2 – Introduction to Friction Stir Processing(FSP). Metal Matrix Composites by Friction Stir Processing, (2018) 17-29
[39] Y.Morisada, H.Fujii, T.Nagaoka, M.Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Materials Science and Engineering A 433 (2006) 50-54
[40] A.H. Feng, Z.Y. Ma, Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing. Scripta Materialia 56 (2007) 397-400
[41] Y.J. Kwon, I. Shigematsu, N. Saito, Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scripta Materialia, 49(2003) 785-789
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *