帳號:guest(52.14.116.76)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:洪瑞宏
作者(英文):Rui-Hong Hong
論文名稱:基於機器學習之H.266/VVC快速編碼演算法
論文名稱(英文):Fast Coding Algorithm Based On Machine Learning for H.266/VVC
指導教授:陳美娟
指導教授(英文):Mei-Juan Chen
口試委員:高立人
翁若敏
口試委員(英文):Lih-Jen Kau
Ro-Min Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610623004
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:94
關鍵詞:視訊影像編碼機器學習
關鍵詞(英文):Video CodingMachine LearningH.266/VVC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
下一代視訊編碼標準H.266/VVC基於H.265/HEVC的四元樹(Quad-tree)切割方式,又新增了MTT(Multi-Type Tree)的架構,使編碼單位(Coding Unit)的分割更加靈活,但也因此使計算量大幅增加,所以如何加速編碼是非常重要的議題。本論文提出一個基於機器學習之畫面間快速編碼演算法,省略多餘的MTT切割模式,以及調整移動估計的搜尋範圍。實驗結果顯示本論文所提演算法在Random-access的架構下,平均可節省24.60%的編碼時間,且BD-rate只有增加0.35%,在節省計算量的同時仍保有良好的視訊品質。
The next generation video coding standard H.266/VVC based on the quad-tree structure of coding unit(CU) of H.265/HEVC incorporates the multi-type tree(MTT) structure, which makes the CU segmentation more flexible but also significantly increases the computation complexity. How to speed up the encoding is a very important issue. This thesis proposes the fast algorithm by skipping the redundant MTT split mode based on machine learning method, and also reduces the search range of motion estimation. The experimental results show that the proposed algorithm can save 24.60% encoding time on average, and BD-rate is only increased 0.35% under random-access configuration. The proposed algorithm saves the computation time while maintaining good video quality.
第一章 緒論 13
第二章 畫面間編碼之文獻回顧 33
第三章 所提出的畫面間編碼快速演算法 39
第四章 實驗結果 65
第五章 結論與未來展望 82
[1] J. Chen, E. Alshina, G. J. Sullivan, J. R. Ohm, and J. Boyce, “Algorithm description of joint exploration test model 7 (JEM 7),” Doc. JVET-G1001, July 2017.
[2] C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. J. Sullivan, “High efficiency video coding (HEVC) test model 16 (HM 16) Update 4 of Encoder Description,” Doc. JCTVC-V1002, October 2015.
[3] High Efficiency Video Coding (HEVC), Rec. ITU-T H.265 and ISO/IEC 23008-2, January 2013.
[4] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, December 2012.
[5] A. Wieckowski, T. Hinz, B. Bross, T. Nguyen, J. Ma, K. Sühring, H. Schwarz, D. Marpe, and T. Wiegand, “NextSoftware as test software,” Doc. JVET-J0095, April 2018.
[6] J. Chen, Y. Ye, and S. H. Kim, “Algorithm description for versatile video coding and test model 1 (VTM 1),” Doc. JVET-J1002, April 2018.
[7] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “JVET common test conditions and software reference configurations for SDR video,” Doc. JVET-K1010, July 2018.
[8] A. Ortega, and K. Ramchandran, “Rate-distortion methods for image and video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23-50, November 1998.
[9] J. L. Lin, Y. W. Chen, Y. W. Huang, S.M. Lei, “Motion vector coding in the HEVC standard,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 957-968, December 2013.
[10] P. Helle, S. Oudin, B. Bross, D. Marpe, M. O. Bici, K. Ugur, J. Jung, G. Clare, and T. Wiegand, “Block merging for quadtree-based partitioning in HEVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1720-1731, December 2012.
[11] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of HEVC standard,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1792-1801, December 2012.
[12] F. Bossen, X. Li, and K. Suehring, “AHG report: test model software development (AHG3),” Doc. JVET-K0003, July 2018.
[13] H. Huang, S. Liu, Y. H. Huang, C. Y. Chen, and S. Lei, “AHG5: speed-up for JEM-3.1,” Doc. JVET-D0077, October 2016.
[14] Z. Jin, P. An, L. Shen, and J. Sun, “CNN oriented fast QTBT partition algorithm for JVET intra coding,” in Proceedings of IEEE Visual Communications and Image Processing, FL, USA, December 2017.
[15] Z. Wang, S. Wang, J. Zhang, S. Wang, and S. Ma, “Effective quadtree plus binary tree block partition decision for future video coding,” in Proceedings of Data Compression Conference, Snowbird, UT, April 2017.
[16] T. Lin, H. Y. Jiang, J. Y. Huang, and P. C. Chang, “Fast binary tree partition decision in H.266/FVC intra coding,” in Proceedings of IEEE International Conference on Consumer Electronics, Taichung, Taiwan, August 2018.
[17] Z. Wang, S. Wang, J. Zhang, and S. Ma, “Local-constrained quadtree plus binary tree block partition structure for enhanced video coding,” in Proceedings of IEEE Visual Communications and Image Processing, Chengdu, China, November 2016.
[18] Y. Yamato, and T. Ikai, “AHG5: Fast QTBT encoding configuration,” Doc. JVET-D0095, October 2016.
[19] S. H. Park, and E. S. Jang, “An efficient motion estimation method for QTBT structure in JVET future video coding,” in Proceedings of Data Compression Conference, Snowbird, UT, April 2017.
[20] W. Park, B. Lee, and M. Kim, “Fast computation of integer DCT-V, DCT-VIII and DST-VII for video coding,” IEEE Transactions on Image Processing, early access, February 2019.
[21] S. H. Park, T. Dong, and E. S. Jang, “Low complexity reference frame selection in QTBT structure for JVET future video coding,” in Proceedings of International Workshop on Advanced Image Technology, Chiang Mai, Thailand, January 2018.
[22] Z. Wang, S. Wang, J. Zhang, S. Wang, and S. Ma, “Probabilistic decision based block partitioning for future video coding,” IEEE Transactions on Image Processing, vol. 27, no. 3, pp. 1475-1486, December 2018.
[23] J. R. Quinlan, “Induction of decision trees,” Machine Learning, pp. 81-106, 1986.
[24] L. Breiman, “Classification and regression trees,” Routledge, 2017.
[25] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, October 2001.
[26] M. J. Chen, Y. D. Wu, C. H. Yeh, K. M. Lin, and S. D. Lin, “Efficient CU and PU decision based on motion information for inter-prediction of HEVC,” IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4735-4745, November 2018.
[27] G. Bjontegaard, “Calculation of average PSNR differences between RD curves,” ITU-T SG16/Q6 Document, VCEG-M33, Austin, April 2001.
[28] G. Bjontegaard, “Improvements of the BD-PSNR model,” ITU-T SG16/Q6, Document, VCEG-AI11, Berlin, July 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *