帳號:guest(3.128.171.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:何政杰
作者(英文):Jheng-Jie He
論文名稱:應用於車載系統之低功耗高增益混頻器設計
論文名稱(英文):Design of High Gain Low Power Mixers for Vehicle Systems Application
指導教授:翁若敏
指導教授(英文):Ro-Min Weng
口試委員:邱煥凱
林宗賢
翁若敏
口試委員(英文):Hwann-Kaeo Chiou
Tsung-Hsien Lin
Ro-Min Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610623009
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:79
關鍵詞:混頻器車載系統電流注入技術頻率調變連續波雷達系統超寬頻脈波雷達系統低功耗高增益
關鍵詞(英文):Current bleeding technologyFMCWUWB pulseMixer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:75
  • 收藏收藏:0
在無線通訊系統中收發機設計為一個重要的關鍵,其中位於收發機前端的混頻器需將前一級低雜訊放大器的訊號與本地振盪器的訊號進行混頻,將完成混頻的訊號交付給後級電路做使用,高轉換增益、低雜訊、良好輸入與輸出匹配、高線性度、小面積與低功耗皆是混頻器設計重點。本論文主要針對「應用於車載系統之高增益低功耗混頻器設計」進行研究探討、設計與製作,共提出兩顆應用於車載系統的混頻器。
第一顆為「頻率調變連續波雷達之高增益低功耗混頻器設計」,頻率調變連續波雷達系統操作在24GHz;此電路使用電流注入技術來降低流入開關級的電流,使開關級電晶體可以使用較小的尺寸,進而降低達到功耗,且可以使轉導值上升提高轉換增益,使電晶體操作在線性區可以改善單平衡混頻器線性度較差的缺點,負載級利用共模回授技術,比起傳統電阻負載有低輸出擺幅,進而提高轉換增益且不會使線性度的表現下降。第二顆「超寬頻脈波雷達系統之低功耗高增益混頻器設計」,超寬頻脈波雷達系統操作頻帶從20到28GHz,與第一顆電路相同使用電流注入技術提高轉換增益、降低功耗,負載級利用交叉耦合對負阻抗的性質得到高轉換增益並利用緩衝級設計之跨導放大器利用電流回授技術降低核心電路之功耗,在擁有整體電路低功率消耗特性下,仍達到高增益的效果。
以上兩顆晶片皆是使用國家晶片中心所提供tsmc0.18m 1P6M CMOS製程模擬及實作,晶片採用on-wafer方式測量。第一顆頻率調變連續波雷達之高增益低功耗混頻器設計模擬特性如下:操作電壓1.2V,總消耗功率為4.47mW,轉換增益為14.4dB,最小雜訊為11.2dB,輸入反射係數與輸出反射係數皆小於-10dB,晶片面積0.944×0.744mm2。第二顆超寬頻脈波雷達系統之低功耗高增益混頻器設計,模擬結果如下:操作電壓1.2V,總消耗功率為5.25mW,最大轉換增益14.3dB,最小雜訊為11.6dB,輸入反射係數與輸出反射係數皆小於-10dB,晶片面積0.722×0.869 mm2。結果顯示兩顆都具有低功耗高增益之特性。
In recent years, due to the rapid development of wireless communication systems and advances of CMOS process technology, Transceiver design is an important key in wireless communication systems. The mixer at the front end of the transceiver needs to mix the signal of the previous low-noise amplifier with the signal of the local oscillator to deliver the mixed-signal signal.
In the thesis ,both two mixers are based on architecture of a traditional Single-balanced Mixer. Useing current-bleeding technology improve conversion gain and power consumption performance ,The first mixer chip is designed within 24GHz of FMCW operation. The load stage utilizes a common-mode feedback circuit to improve performance. Under the supply voltage of 1.2 V , circuit performances are achieved with a gain 14.4 dB. Noise figure is 11.3 dB. IIP3 is -9dBm The core power consumption is 4.47 mW. The chip size is 0.944×0.744mm2 The second mixer chip with high conversion gain and low power consumption is proposed for 20-28 GHz of UWB pulse wave a operation. The load stage utilizes cross-coupled pair to improve conversion gain performance. Under the supply voltage of 1.2V, performances are achieved with a gain of 14.3dB.Noise figure is 11.6dB. IIP3 is -3dBm The core power consumption is 5.25 mW. The chip size is 0.722×0.869mm2
The proposed mixer chips were fabricated using tsmc 0.18m 1P6M CMOS processes technology.The circuit verification and simulation are done by using advanced design system (ADS). Especially, The proposed chips was obtained by using a cloud server which is provided by National Chip Implementation Center.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 序論 1
1.1.研究背景與動機 1
1.2.1先進駕駛輔助系統(Advanced Driver Assistance Systems, ADAS) 2
1.2.2頻率調變連續波雷達系統原理 3
1.2.3超寬頻脈波雷達系統原理 4
1.2.4車載雷達系統射頻接收機 5
1.3 K頻段簡介 6
1.4論文組織 6
第二章混頻器介紹 7
2.1混頻器種類 7
2.1.1 混頻器簡介 7
2.1.2 被動式混頻器 7
2.1.3主動式混頻器 8
2.2混頻器重要規格參數 13
2.2.1轉換增益 13
2.2.2 S參數 14
2.2.3線性度 15
2.2.4隔離度 16
2.2.5雜訊指數 17
2.3設計流程 18
2.4文獻回顧 19
2.4.1低功耗電流注入使用正向基底偏壓技術之混頻器 19
2.4.2超寬頻低雜訊放大器結合混頻器應用於無線電之接收器 20
第三章應用於頻率調變連續波雷達 低功耗高增益混頻器 23
3.1頻率調變連續波雷達設計之低功耗高增益混頻器 23
3.1.1電流注入技術(Current Bleeding) 23
3.1.2共模回授負載技術 26
3.1.3電路設計 27
3.2.模擬及量測結果 32
3.2.1模擬結果 32
3.2.2量測結果 39
3.3討論及比較 44
第四章應用於超寬頻脈波雷達系統 低功耗高增益混頻器 48
4.1超寬頻脈波雷達設計之低功耗高增益混頻器 48
4.1.1交叉耦合對主動負載技術 49
4.1.2跨阻放大器技術Trans-Impedance-Amplifier (TIA) 50
4.1.2電路設計 52
4.2 模擬及量測結果 54
4.2.1模擬結果 54
4.2.2量測結果 62
4.3討論及比較 66
第五章 結論與未來方向 71
5.1結論 71
5.2未來方向 71
參考文獻 73

[1] R. Thakur, “Scanning LIDAR in Advanced Driver Assistance Systems and Beyond: Building a road map for next-generation LIDAR technology,” IEEE Consumer Electronics Society, vol. 5, no. 3, pp. 48 – 54, July 2016.
[2] Jia-Li Yin, Bo-Hao Chen, K. Robert Lai, and Ying Li, “Automatic Dangerous Driving Intensity Analysis for Advanced Driver Assistance Systems from Multimodal Driving Signals,” IEEE Sensors Journal, pp. 1 – 10, Oct. 2017.
[3] Carlos Massera Filho, Marco H. Terra,and Denis F. Wolf, “Safe Optimization of Highway Traffic With Robust Model Predictive Control-Based Cooperative Adaptive Cruise Control,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 11, pp. 3193 – 3203, May 2017.
[4] Takeo Kato, Chunzhao Guo, Kiyosumi Kidono, Yoshiko Kojima, and Takashi Naito, “SpaFIND: An Effective and Low-Cost FeatureDescriptor for Pedestrian Protection Systemsin Economy Cars,” IEEE Transactions on Intelligent Vehicles, vol. 2, no. 2, pp. 123 – 132, June 2017.
[5] Alberto Córdoba, José Javier Astrain, Jesús Villadangos, Leire Azpilicueta, Peio López-Iturri,Erik Aguirre, and Francisco Falcone, “SesToCross: Semantic Expert System to ManageSingle-Lane Road Crossing,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1221 – 1233, May 2017.
[6] Scott Schnelle, Junmin Wang, Hai-Jun Su, and Richard Jagacinski, “A Personalizable Driver Steering Model Capable of Predicting Driver Behaviors in Vehicle Collision Avoidance Maneuvers,” IEEE Transactions on Human-Machine Systems, vol. 47, no. 5, pp. 625 – 635, Oct. 2017.
[7] Christian Braunagel, Wolfgang Rosenstiel, and Enkelejda Kasneci, “Ready for Take-Over? A New Driver AssistanceSystem for an Automated Classification of DriverTake-Over Readiness,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 4, pp. 10 – 22, Oct. 2017.
[8] I. Gresham et al., “Ultra-wideband Radar Sensors for Short-range Vehicular Applications,” IEEE Trans . Microw. Theory Tech., vol. 52, no. 9, pp. 2105–2122, Sep. 2004.
[9] V. Jain, F. Tzeng, L. Zhou, and P. Heydari, “A Singlechip Dual-band 22-to-29 GHz/77-to-81 GHz BiCMOS Transceiver for Automotive Radars,” in IEEE Int. Solid- State Circuits Conf. Dig. Tech. Papers, pp. 308–309, 2009.
[10] Behzad Razavi, Design of Analog CMOS Integrated Circuits, The McGraw-Hill Companies, Inc., Chap. 15, 2001.
[11] Behzad Razavi, RF Microelectronics, Prentice-Hall, 1997.
[12] V. Subramanian, T. Zhang, and G. Boeck, “Low Noise 24 GHz CMOS Receiver for FMCW Based Wireless Local Positioning,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 10, pp.553-55, Oct. 2011.
[13] G. Pyo, J. Yang, C.-Y. Kim, and S. Hong, “K-Band Dual-Mode Receiver CMOS IC for FMCW/UWB Radar,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 6, pp.393-397, June. 2014.
[14] J.-H. Cheng, C.-L. Hsieh, M.-H. Wu, J.-H. Tsai, and T.-W. Huang, “A 0.33 V 683 μW K-Band Transformer-Based Receiver Front-End in 65 nm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 3, pp. 184-186, Mar. 2015.
[15] Yong Wang, Member, Liheng Lou, Bo Chen, Ying Zhang, Kai Tang, Lei Qiu, Supeng Liu, and Yuanjin Zheng, “A 260-mW Ku-Band FMCW Transceiver for Synthetic Aperture Radar Sensor With 1.48-GHz Bandwidth in 65-nm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4385-4399, May 2017.
[16] Gitae Pyo, Choul-Young Kim,and Songcheol Hong, “Single-Antenna FMCW Radar CMOS Transceiver IC,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 3, pp. 945-954, Mar. 2017.
[17] Manolis T. Terrovitis , Robert G. Meyer“ Noise in Current-Commutating CMOS Mixers” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 6, JUNE 1999
[18] S.-G. Lee and J.-K. Choi“ Current-reuse bleeding mixer” Electronics Letters” 13th vol. 36 No. 8 April 2000
[19] Gim Heng Tan, Harikrishnan Ramiah, Pui-In Mak, and Rui P. Martins “A 0.35 V 520-μW 2.4-GHz Current-Bleeding Mixer With Inductive-Gate and Forward-Body Bias, Achieving >13-dB Conversion Gain and >55-dB Port-to-Port Isolation” IEEE Transactions on Microwave Theory and Techniques vol. 65, no. 4, April 2017
[20] Nandini Vitee, Harikrishnan Ramiah and Wei-Keat Chong “A Wideband CMOS LNA-Mixer for Cognitive Radio Receiver” IEEE Asia Pacific Conference on Circuits and Systems Nov. 2014, pp. 348-351.
[21] Hwann Kaeo Chiou,Kuei Cheng Lin, Wei-Hsien Chen, and Ying-Zong Juang“A 1-V 5-GHz Self-Bias Folded-Switch Mixer in 90-nm CMOS for WLAN Receiver” IEEE Transactions On Circuits And Systems vol. 59, no. 6, June 2012
[22] J. Dang, B. Meinerzhagen and S. Brückner“A low noise figure K-band receiver in 130 nm CMOS” German Microwave Conference March 2018,pp.243-240
[23] M. K. Ali, A. Hamidian, A. Malignaggi, Mhd. Tareq and Arnous, George Boeck“Low Flicker Noise High Linearity Direct Conversion Mixer for K-Band Applications in a 90 nm CMOS Technology” International Conference on Microwaves, Radar and Wireless Communications June 2014
[24] Chun-Hsing Li, Chien-Nan Kuo and Ming-Ching Kuo“ A 1.2-V 5.2-Mw 20–30-GHz Wideband Receiver Front-End in 0.18- m CMOS” IEEE Transactions On Microwave Theory And Techniques vol. 60, no. 11, November 2012

[25] Chun-Hsing , Li Chun-Lin Ko ,Ming-Ching Kuo and Da-Chiang Chang“A 7.1-mW K/Ka-Band Mixer With Configurable Bondwire Resonators in 65-nm CMOS” IEEE Transactions On Very Large Scale Integration Systems vol. 25, no. 9, September 2017
[26] Sunwoo Kong,Choul-Young Kim and Songcheol Hong“A K-Band UWB Low-Noise CMOS Mixer With Bleeding Path Gm-Boosting Technique” IEEE Transactions On Circuits And Systems vol. 60, no. 3, March 2013
[27] 魏宏哲,泛用於WiMax系統之寬頻混頻器的設計與分析,國立東華大學電機工程研究所博士論文,民國九十八年。
[28] 林佑儒,應用於UWB或K band 無線通訊接收機之高線性度混頻器設計,國立東華大學電機工程研究所碩士論文,民國一百零三年。
[29] Yu-Hsin Chang, Chia-Yang Huang, and Yen-Chung Chiang“A 24GHz Down-Conversion Mixer with Low Noise and High Gain” European Microwave Integrated Circuit Conference Oct 2012,pp.285-288
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *