帳號:guest(3.140.186.17)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蘇芷萱
作者(英文):Tzu-Hsuan Su
論文名稱:基於梯度之三維視訊景深圖快速編碼演算法
論文名稱(英文):Fast Gradient-Based Coding Algorithm of Depth Map for 3D Video
指導教授:陳美娟
指導教授(英文):Mei-Juan Chen
口試委員:高立人
翁若敏
口試委員(英文):Lih-Jen Kau
Ro-Min Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610623014
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:86
關鍵詞:三維高效率視訊編碼梯度景深圖編碼編碼單位決策預測單位決策
關鍵詞(英文):3D High Efficiency Video CodingGradientDepth map codingCoding Unit DecisionPrediction Unit Decision
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
三維高效率視訊編碼(3D High Efficiency Video Coding,3D-HEVC) 是多視角視訊最新的3D視訊編碼標準。3D-HEVC除了利用時間域和空間域相關性外,還加入了視角域做為參考,也因此導致3D-HEVC編碼時間和複雜度明顯的增加。為了降低編碼複雜度,本論文利用Sobel邊緣偵測演算法,以景深畫面的梯度值為依據,將編碼樹單位分類成不同的種類,並依照分類提出編碼單位的快速深度決策演算法與調整移動估計搜尋範圍;另外,本論文根據統計與參考空間域和視角域之鄰近編碼樹單位的相關性提出預測單位快速模式決策演算法。實驗結果顯示本論文所提的演算法相較於參考文獻能減少更多的編碼時間,且維持良好的視訊品質與位元率。
3D-HEVC(The 3D Extension of High Efficiency Vide Coding) is the latest 3D video coding standard with the video format of multi-view plus format. 3D-HEVC utilizes not only the information of temporal and spatial domains but also that of inter-view domain. Thus, the time consumption and complexity of 3D-HEVC also increase significantly. In order to reduce the coding complexity of depth map, this thesis uses Sobel edge detection algorithm to calculate the gradient value of the depth map. We divide the coding tree unit (CTU) into different types according to the gradient. According to the type of CTU, the fast depth decision of the coding unit is proposed and the search range is adjusted adaptively. In addition, the statistical results and the correlations between neighboring CTUs in spatial domain and inter-view domain are also utilized to propose the fast mode decision of the prediction unit. Experimental results show that the algorithm proposed in this thesis can reduce more coding time than those of the previous works, and maintain good video quality and bit-rate.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 三維視訊編碼簡介 1
1.2 三維視訊編碼架構 6
1.2.1 編碼單位(Coding Unit,CU) 7
1.2.2 預測單位(Prediction Unit,PU) 9
1.2.3 轉換單位(Transform Unit,TU) 12
1.3 3D-HEVC畫面內預測(Intra Prediction) 12
1.4 3D-HEVC 畫面間預測(Inter Prediction) 13
1.4.1 移動估計(Motion Estimation) 13
1.4.2 Advanced Motion Vector Prediction(AMVP) 14
1.4.3 Disparity Vector From Neighbor Blocks (NBDV) 15
1.5 研究動機 17
1.6 論文架構 18
第二章 文獻探討 19
2.1 應用於景深畫面之快速演算法 19
2.2 應用於彩色畫面之快速演算法 20
2.3 應用於彩色與景深之快速演算法 22
第三章 提出的景深圖快速編碼演算法 25
3.1 編碼單位深度快速決策 26
3.1.1 編碼單位大小與邊緣強度分析 26
3.1.2 編碼樹單位之分類 38
3.1.3 編碼單位深度快速決策演算法 52
3.2 基於編碼樹單位種類之搜尋範圍調整 55
3.3 預測單位模式快速決策 56
3.3.1 預測單位模式與CTU種類分析 56
3.3.2 預測單位模式快速決策演算法 60
第四章 實驗結果 63
4.1 實驗環境介紹 63
4.2 實驗結果 69
第五章 結論與未來展望 81
參考文獻 83
[1] T. Wiegand, G. J. Sullivan, G Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 17, pp. 560-576, July 2003.
[2] G. J. Sullivan, J. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, December 2012.
[3] O. Stankiewicz, M. Domanski, A. Dziembowski, A. Grzelka, D. Mieloch, and J. Samelak, “A free-viewpoint television system for horizontal virtual navigation,” IEEE Transactions on Multimedia, vol. 20, no. 8, pp. 2182-2195, January 2018.
[4] K. Muller, H. Schwarz, D. Marpe, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Lakshman, P. Merkle, F. Rhee, G. Tech, M. Winken, and T. Wiegand, “3D high-efficiency video coding for multi-view video and depth data,” IEEE Transactions on Image Processing, vol. 22, no. 9, pp. 3366-3378, September 2013.
[5] G. Tech, Y. Chen, K. Müller, J. R. Ohm, A. Vetro, and Y. K. Wang, “Overview of the multiview and 3D extensions of high efficiency video coding,” IEEE Trans. Circuits Systems for Video Technology, vol. 26, no. 1, pp. 35-49, January 2016.
[6] C. Fehn, “Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV,” in Proceedings of SPIE Conf. Stereoscopic Displays and Virtual Reality Systems XI, vol. 5291, pp. 93-104, January 2004.
[7] Y. Chen, G. Tech, K. Wegner, and S. Yea, “Test model 11 of 3D-HEVC and MV-HEVC,” in JCT-3V Document JCT3V-K1003, February 2015.
[8] Y. Chen, X. Zhao, L. Zhang, and J. Kang, “Multiview and 3D video compression using neighboring block based disparity vectors,” IEEE Transactions on Multimedia, vol. 18, no. 4, pp. 576-589, April 2016.
[9] 3D-HEVC software HTM-16.1, accessed on 9 April 2019, available online: https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/tags/HTM-16.1/.
[10] P. Merkle, K. Müller, D. Marpe, and T. Wiegand, “Depth intra coding for 3D video based on geometric primitives,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 3, pp. 570-582, March 2016.
[11] J. Y. Lee, M. W. Park, and C. Kim, “3D-CE1: Depth intra skip (DIS) mode,” in JCT-3V Document JCT3V-K1003, February 2015.
[12] H. Liu and Y. Chen, “Generic segment-wise DC for 3D-HEVC depth intra coding,” in Proceedings of IEEE International Conference on Image Processing, pp. 3219-3222, October 2014.
[13] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23-50, November 1998.
[14] Y. L. Chang, C. L. Wu, Y. P. Tsai, and S. Lei, “3D-CE5.h related: Depth-oriented neighboring block disparity vector (DoNBDV) with virtual depth,” in JCT-3V Document JCT3V-B0090, October 2012.
[15] J. Lei, J. Duan, and F. Wu, “Fast mode decision based on grayscale similarity and inter-view correlation for depth map coding in 3D-HEVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 3, pp. 706-718, March 2016.
[16] Q. Zhang, N. Zhang, T. Wei, K. Huang, X. Qian, and Y. Gan, “Fast depth map mode decision based on depth–texture correlation and edge classification for 3D-HEVC,” Journal of Visual Communication and Image Representation, vol. 45, pp. 170-180, May 2017.
[17] H. Chen, C. H. Fu, Y. Zhang, Y. L. Chan, and W. C. Siu, “Early merge mode decision for depth maps in 3D-HEVC,” in Proceedings of International Conference on Digital Signal Processing, November 2017.
[18] Y. W. Liao, M. J. Chen, C. H. Yeh, J. R. Lin, and C. W. Chen, “Efficient inter-prediction depth coding algorithm based on depth map segmentation for 3D-HEVC,” Multimedia Tools and Applications, vol. 78, pp. 10181–10205, April 2019.
[19] N. Zhang, Y. W. Chen, J. L. Lin, J. An, K. Zhang, S. Lei, S. Ma, D. Zhao, W. Gao, “Fast encoder decision for texture coding,” ITU-T SG 16 WP 3 and ISO/IEC JTC l/SC 29/WG 11 JCT3V-E0173, July 2013.
[20] Y. X. Song and K. B. Jia, “Early merge mode decision for texture coding in 3D-HEVC,” Journal of Visual Communication and Image Representation, vol. 33, pp. 60-68, November 2015.
[21] Q. Zhang, H. Chang, X. Huang, L. Huang, R. Su, and Y. Gan, “Adaptive early termination mode decision for 3D-HEVC using inter-view and spatio-temporal correlations,” AEU - International Journal of Electronics and Communications, vol. 70, no. 5, pp. 727-737, May 2016.
[22] G. Avila, R. Conceição, T. Bubolz, B. Zatt, B. Zatt, L. Agostini, G. Correa, “Complexity reduction of 3D-HEVC based on depth analysis for background and ROI classification,” European Signal Processing Conference, September 2017.
[23] Z. Pan, X. Yi, and L. Chen, “Motion and disparity vectors early determination for texture video in 3D-HEVC,” Multimedia Tools and Applications, pp. 1-18, November 2018.
[24] Q. Zhang, S. Wei, and R. Su, “Low-complexity texture video coding based on motion homogeneity for 3D-HEVC,” Scientific Programming, vol. 2019, January 2019.
[25] F. Chen, S. Liu, Z. Peng, Q. Hu, G. Jiang, and M. Yu, “Bayesian-theory-based fast CU size and mode decision algorithm for 3D-HEVC depth video inter-coding,” KSII Transactions on Internet and Information Systems, vol. 12, no. 4, pp. 1730-1747, April 2018.
[26] Y. Li, G. Yang, Y. Zhu, X. Ding, and R. Gong, “Probability model-based early merge mode decision for dependent views coding in 3D-HEVC,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 14, no.4, November 2018.
[27] J. Chen, B. Wang, J. Liao, and C. Cai, “Fast 3D-HEVC inter mode decision algorithm based on the texture correlation of viewpoints,” Multimedia Tools and Applications, vol. 78, no.20, pp. 29291–29305, October 2019.
[28] K. Müller and A. Vetro, “Common test conditions of 3DV core experiments,” in JCT-3V Document JCT3V-G1100, January 2014.
[29] G. Bjontegaard, “Calculation of Average PSNR Differences Between RD Curves,” ITU-T SG16/Q6, Document VCEG-M33, Austin, April 2001.
[30] G. Bjontegaard, “Improvement of the BD-PSNR Model,” ITU-T SG16/Q6, Document VCEG-AI11, Berlin, July 2008.
(此全文20250214後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *