帳號:guest(18.221.124.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:貴丞浩
作者(英文):Chen-Hao Kuei
論文名稱:染料敏化與鈣鈦礦太陽能電池電極優化之研究
論文名稱(英文):Investigation of the Electrode Optimization for Dye-Sensitized and Perovskite Solar Cells
指導教授:蔡志宏
指導教授(英文):Chih-Hung Tsai
口試委員:游源祥
莊沁融
口試委員(英文):Yuan-Hsiang Yu
Chin-Jung Chuang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610625002
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:114
關鍵詞:鈣鈦礦太陽能電池染料敏化太陽能電池甲苯高分子氧化石墨烯
關鍵詞(英文):Perovskite solar cellsDye-sensitized solar cellsToluenePolymerGraphene oxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏收藏:0
染料敏化太陽能電池也稱為第三代奈米薄膜太陽能電池,由於電池原料成本低且取得容易、製程簡單,只需要簡易設備即可完成,並具備有透光、半透明特性以及可撓性質,可廣泛應用於日常生活當中,如小型3C產品、建築玻璃等。鈣鈦礦太陽能電池具有良好的吸光特性以及高轉換效率之表現,幾年之內光電轉化效率從3.8%提高到認證的22.1%,與傳統矽晶太陽能電池相比,材料成本、製程設備與製程時間更低且迅速,吸引眾多科研者投入研究,為現在一大熱門議題。
本研究透過材料以及元件特性分析,探討不同材料及製程對於染料敏化太陽能電池及鈣鈦礦太陽能電池所產生的影響。本研究可分為三個部分:一、鈣鈦礦太陽能電池之電子傳輸層PC60BM膜厚轉速之比較,實驗結果顯示,在轉速1750rpm時,元件能達到12.36% 效率。在1750rpm時,PC60BM電子傳輸層能夠達到最平整且最具有包覆性的薄膜,有利於電子傳輸通過。二、使用四種不同有機溶劑:甲苯(MB)、三氯甲烷(CF)、氯苯(CB)、鄰二氯苯(DCB),添加於鈣鈦礦主動層,使鈣鈦礦表面結晶程度改變。實驗結果顯示,當使用甲苯(MB)時能達到最好的表面結晶均勻程度及表面包覆程度,元件效率最高可達到約11.01%。三、使用不同燒結溫度的GO/Mn,再與PEDOT高分子混合,形成複合材料,以取代傳統染料敏化太陽能電池白金(Pt)對電極,實驗結果顯示,使用PEDOT/GO/Mn 300°C複合材料作為對電極,元件效率可達到7.69%,優於傳統白金對電極之電池轉換效率(7.34%)。
Dye-sensitized solar cells are known as the third-generation nano thin-film solar cells. For DSSCs, the materials are inexpensive and the fabrication processes are simple, only need simple equipment to make a solar cell. Dye-sensitized solar cells have the advantages of light transparency and flexibility. They can be widely used in daily life, such as small 3C products, glass of buildings. Perovskite solar cells have good light absorption characteristics and high conversion efficiency. Within a few years, the conversion efficiency increased from 3.8% to 22.1%. Material costs and fabrication time are lower than traditional silicon solar cells. Recently, perovskite solar cells have been a hot research topic.
This study uses material and device characteristics analysis to apply different materials and process conditions for dye-sensitized solar cells and perovskite solar cells. The experimental part can be divided into three parts. First, the spin coating speed of the electron transport layer PC60BM for perovskite solar cell was studied. The results showed that the highest PSC efficiency of about 12.36% was obtained at the spin coating speed of 1750 rpm. At 1750 rpm, the film of PC60BM can achieve a flat and coveraged film, which can enhance the electron transport properties. Second, four different organic solvents including toluene (MB), chloroform (CF), chlorobenzene (CB), and orthodichlorobenzene (DCB) were separately added to the perovskite active layer. When toluene (MB) was used, the best surface crystal uniformity and surface coverage can be achieved, and the device efficiency can reach up to about 11%. Third, polymer and GO/Mn composite materials were used as counter electrodes for DSSCs. PEDOT/GO/Mn composites were used to replace the traditional platinum (Pt) counter electrode. The results showed that DSSCs with PEDOT/GO/Mn 300°C counter electrode can achieve the maximum conversion efficiency of 7.69%, which was higher than that of the DSSCs using traditional platinum electrode.
致謝 III
摘要 V
Abstract VII
目錄 IX
圖目錄 XIII
表目錄 XVII
第一章 緒論 1
1.1 前言 1
1.1.1 能源現況 1
1.1.2 太陽能 4
1.2 太陽能電池 7
1.2.1太陽能電池種類與發展 7
1.2.2 染料敏化太陽能電池 9
1.2.3 鈣鈦礦太陽能電池 13
1.3 實驗儀器與研究原理 18
太陽光模擬器 (Solar Simulator) 18
電化學分析儀(EIS) 21
外部量子效率量測儀 (External Quantum Efficiency Measurement System) 23
場發射掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope) 25
能量色散X光譜儀(Energy dispersive spectrometers, EDS) 25
原子力顯微鏡(Atomic Force Microscope) 26
X光繞射分析儀 (X-Ray Diffractometer) 28
X光光電子能譜儀 (X-ray Photoelectron Spectrometer) 29
紫外光/可見光光譜儀(UV/VIS Spectrometer) 29
1.4 參考文獻 31
第二章 鈣鈦礦太陽能電池之電子傳輸層PC60BM轉速比較 35
2.1前言 35
2.2 實驗方法 37
2.2.1 材料製備 37
2.2.2 元件製作 37
2.3 結果與討論 40
2.3.1 材料特性分析 40
表面形貌分析 40
元素結構分析 50
光學特性分析 55
2.3.2 元件特性分析 56
J-V Curve 分析 56
外部量子效率分析 58
老化實驗分析 59
2.4 結論 61
2.5參考文獻 63
第三章 鈣鈦礦太陽能電池主動層添加不同溶劑比較 65
3.1前言 65
3.2 實驗方法 66
3.2.1 材料製備 66
3.2.2 元件製作 66
3.3 結果與討論 69
3.3.1 材料特性分析 69
表面形貌分析 69
元素結構分析 74
光學特性分析 78
3.3.2元件特性分析 80
J-V Curve 分析 80
外部量子效率分析 82
電化學阻抗頻譜分析 83
3.4 結論 84
3.5參考文獻 86
第四章 PEDOT/石墨烯/錳大環錯合物複合材料於染料敏化太陽能電池對電極之研究 87
4.1前言 87
4.2 實驗方法 88
4.2.1材料製備 88
3.2.2 元件製作 90
4.3 結果與討論 93
4.3.1 材料特性分析 93
表面形貌分析 93
元素結構分析 99
電化學循環伏安分析 105
4.3.2元件特性分析 106
J-V Curve 分析 106
外部量子效率分析 108
電化學阻抗頻譜分析 109
4.4 結論 110
4.5參考文獻 111
第五章 總結論 113
1.4 參考文獻
[1] 機電工程署,《能源》,香港特別行政區政府,2011
[2] 維基百科,"第一次工業革命"
[3] 2000 National Policy Foundation. All rights reserved.16 Hang Chow South Road, Sec 1,Taipei 100,Taiwan,R.O.C.
[4] 陳維新,《能源概論》, 高立圖書, 2012
[5] 維基百科,"溫室氣體"
[6] National Institute for Environmental Studies,2018
[7] 晁積企業,《太陽能發電優缺點》,2015
[8] 林家銘 ,《染料敏化與鈣鈦礦太陽能電池材料及元件特性分析》, 國立東華大學光電工程研究所碩士論文, 2017
[9] How Round is the Sun?. NASA. 2008-10-02 [7 March 2011].
[10] First Ever STEREO Images of the Entire Sun. NASA. 2011-02-06 [7 March 2011].
[11] Basu, S.; Antia, H. M. Helioseismology and Solar Abundances. Physics Reports. 2008, 457 (5–6):
217.Bibcode:2008PhR...457..217B. arXiv:0711.4590. doi:10.1016/j.physrep.2007.12.002
[12] Broggini, Carlo. Nuclear Processes at Solar Energy. Physics in Collision. 2003-06-28: 21. Bibcode:2003phco.conf...21B. arXiv:astro-ph/0308537
[13] Zirker, Jack B. Journey from the Center of the Sun. Princeton University Press.2002: 15–34. ISBN 9780691057811.
[14] Phillips, Kenneth J. H. Guide to the Sun. Cambridge University Press. 1995:47–53. ISBN 9780521397889.
[15] 科學Online《太陽能電池》,NTU ,2014
[16] Guechi, A., et al., Air Mass Effect on the Performance of Organic Solar Cells.
Energy Procedia, 36, 2013, 714-721.
[17] JEONG, J., PHOTOVOLTAICS: Measuring the 'Sun'; Retrieved from:http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html.
[18] 黃偉智,《奈米複合材料於染料敏化太陽能電池對電極之研究》, 國立東華大學光電工程研究所碩士論文, 2015
[19] 上海复享光學股份有限公司,《太陽輻照度測量》, 2015
[20] Tsai, C.H., "Investigation of Device Structures and Novel Organic Dyes for Dye-Sensitized Solar Cells ", Graduate Institute of Photonics Lights Innovation, 2010
[21] 維基百科,"太陽光、Air mass (solar energy) "
[22] John C. Arvesen, R.N.G., and B. Douglas Pearson, Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft. Applied Optics, 8, 1969, 2215-2232.
[23] http://s90304a123.pixnet.net/blog/post/33587001-%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0%E7%9A%84%E7%A8%AE%E9%A1%9E%E8%88%87%E5%A4%AA%E9%99%BD%E5%85%89%E9%9B%BB
[24] 維基百科,"太陽能電池"
[25] NREL, Best Research-Cell Efficiencies; Retrieved from:https://www.nrel.gov/pv/.
[26] Grätze, M. (1991). "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films " Nature 353: 737 - 740
[27] Tsai, C.H., "Investigation of Device Structures and Novel Organic Dyes for Dye-Sensitized Solar Cells ", Graduate Institute of Photonics Lights Innovation, 2010
[28] Gratzel, M. (2001). "Photoelectrochemical cells." Nature 414(6861): 338-344.
[29] Datta, S., Piezoelectric Materials: Crystal Orientation and Poling Direction; Retrieved from: https://www.comsol.com/blogs/piezoelectric-materials-crystal-orientation-poling-direction/.
[30] S. H. Chang, H.M.C., S. H. Chen, K. F. Lin, Recent Advances in Perovskite Absorber Based Photovoltaics (I). Industrial Material, 2015.
[31] EnergyTrend, a Business Division of TrendForce Corp,2018
[32] Marinova, N., et al., Organic and perovskite solar cells: Working principles, materials and interfaces. J Colloid Interface Sci, 488, 2017, 373-389.
[33] Marinova, N., et al., Organic and perovskite solar cells: Working principles, materials and interfaces. J Colloid Interface Sci,488, 2017, 373-389.
[34] ResearchGate GmbH, 2008-2018
[35] 1996 - 2018新浪公司
[36] 中鎢在線新聞網, 《鎢燈絲、冷場、熱場掃描電鏡的區別》 ,2018
[37] Garefully Technology Co., Ltd,《EDS》, 2011
[38] EAG Inc ,《XRD》, 2018
[39] 維基百科,"X射線衍射儀"
[40] 吳維謙,"染料敏化碳管應用於染料敏化太陽能電池之研究"國立東華大學工電工程研究所碩士論文,2015
[41] 洪嘉駿, 紫外–可見光光譜學; Retrieved from: http://highscope.ch.ntu.edu.tw/wordpress/?p=58362.
[42] 奈米光電磁材料技術研發中心,《紫外線/可見光分光光譜儀檢測使用》, 國立台北科技大學

2.5參考文獻
[1] NREL, Best Research-Cell Efficiencies; Retrieved from:https://www.nrel.gov/pv/.
[2] 王建智,《染料敏化與鈣鈦礦太陽能電池元件製備之研究》, 國立東華大學光電工程研究所碩士論文, 2016
[3] Q.Dong,Y.Yuan,Y.Shao,Y.Fang,Q.Wang and J.Huang “Abnormal Crysral Growth in CH3NH3Pb3xClx using a Multi-Cyle Soiution Coating Process”Energy Environ.Sci.8,2464-2470,2015
[4] 維基百科,"PCBM"
[5] 林家銘 ,《染料敏化與鈣鈦礦太陽能電池材料及元件特性分析》, 國立東華大學光電工程研究所碩士論文, 2017

3.5參考文獻
[1] 林家銘 ,《染料敏化與鈣鈦礦太陽能電池材料及元件特性分析》, 國立東華大學光電工程研究所碩士論文, 2017
[2] Liu, Z., et al., Solvent engineering of the electron transport layer using 1,8-diiodooctane for improving the performance of perovskite solar cells. Organic Electronics, 24, 2015, 101-105.
[3] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338(2012) 643–647.
[4] M. Liu, M.B. Johnston, H.J. Snaith, Nature 501 (2013) 395–398.
[5] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A.Marchioro, S.-J. Moon, R.Humphry-Baker, J.-H. Yum, J.E. Moser, M. Gratzel, N.-G. Park, Sci. Rep. 2 (2012)591–597.
[6] H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang,Science 345 (2014) 542–546.
[7] J. You, Y.M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H.Chang, G. Li, Y. Yang, Appl. Phys. Lett. 105 (2014) 183902.
[8] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26 (2014) 6503–
6509.
[9] P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S.T. Williams, X.-K. Xin, J. Lin, A.K.-Y.Jen, Adv. Mater. 26 (2014) 3748–3754.
[10] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13 (2014)
897–903.

4.5參考文獻
[1] Grätze, M. (1991). "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films " Nature 353: 737 – 740
[2] S. Shukla, et al., Iron pyrite thin film counter electrodes for dye-sensitized solar cells: high efficiency for iodine and cobalt redox electrolyte cells, ACS Nano 8 (2014) 10597–10605.
[3] 施純鈞,《石墨烯奈米複合材料於染料敏化太陽能電池對電極之研究》, 國立東華大學光電工程研究所碩士論文, 2017
[4] Tsai, C.H., "Investigation of Device Structures and Novel Organic Dyes for Dye-Sensitized Solar Cells ", Graduate Institute of Photonics Lights Innovation, 2010
[5] Chang, S.H. Chiang, C.H. ,Unraveling the Enhanced Electrical Conductivity of PEDOT:PSS Thin Films for ITO-Free Organic Photovoltaics.IEEE Photonics Journal,July.2014.1-9.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *