帳號:guest(18.191.181.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:王慶祥
作者(英文):Ching-Hsiang Wang
論文名稱:聚光型太陽能追日系統於不同環境變量之特性研究
論文名稱(英文):Study on characteristics of concentrating type sun-tracking solar cell system in different environmental variables
指導教授:白益豪
指導教授(英文):Yi-Hao Pai
口試委員:白益豪
賴建智
陳孟炬
口試委員(英文):Yi-Hao Pai
Chien-Chih Lai
Meng-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610625013
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:88
關鍵詞:太陽能追日系統聚光型太陽能電池溫差發電熱傳導
關鍵詞(英文):solar tracking systemconcentrator photovoltaicsthermoelectric power generationthermal conduction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
能源自產自主對於一個國家而言相當重要,台灣自然資源有限,根據2019年台灣電力供給所對應的發電來源圖指出目前超過95%之能源供給仰賴國外進口,因此再生能源的發展極為重要。其中又以太陽光電產業的生產製造供應鏈完整,因此頗具目前再生能源發展之首要選項。然而,太陽光電設置的評估條件仍然以各區域的日照條件為主,較少研究探討不同環境變量下對發電性能的影響。

本研究主要對於追日型太陽能系統於不同環境變量下進行特性研究,並探討太陽熱能所衍生的影響與可能的應用潛力。在第一部分的研究裡,我們首先進行追日型太陽能系統設置,並調整追日精準度誤差在0.1度以內。接著,我們選擇單晶矽與聚光型太陽能電池(III-V化合物半導體材料)兩種材料同時於台南市歸仁區高發三路,國立交通大學光電學院(GPS位置22.925507,120.294795;環境場域A)與國立東華大學理工學院(GPS位置23.899377,121.544335;環境場域B)進行不同區域之環境差異變量研究。研究結果顯示,環境場域A的全天日射計讀值為814.6W/m2,遠大於環境場域B(559.4W/m2),但對應的聚光型太陽電池最大功率值均約為0.54W,初步歸因於場域A的大氣懸浮粒子遠大於場域B,並導致被散射幅射能又稱漫射(diffuse)的增加。反觀單晶矽太陽能電池於追日型太陽能系統的性能表現則呈現全天日射計讀值正比於太陽電池最大功率值,這結果也意味著聚光型太陽能電池受漫射率的影響甚大。
在第二部分的研究裡,我們將溫差發電晶片(Thermoelectric Power generating Module)整合到聚光型太陽能電池系統中並探討熱能所衍生的影響與可能的應用潛力。研究指出在740W/m2日照與被動式空冷條件下(僅使用鰭片),溫差發電晶片的初始發電功率為0.18 mW,且隨著量測時間到達第15min時,發電功率則下降至0,可歸因於被動式空冷散熱無法長久維持溫差發電晶片冷端的溫度,最終導致該晶片兩側溫差達零度,即達熱平衡。更遠的我們利用主動式散熱模式(風扇)來評估聚光型太陽能系統整合溫差發電晶片之效能,研究結果發現,使用12V轉速2500-3500 RPM的主動式散熱條件下可有效的維持溫差發電晶片的溫度差(最大達55度C),其所產生的溫差發電量為0.045W。

最後,本研究透過Autodesk CFD來進行熱傳導的電腦模擬,並評估最理想的主/被動設計方案,模擬結果指出,在被動式散熱模式中,散熱鰭片設計為280mm*80mm*40mm且不使用風扇,即可以維持溫差44 度C的穩定溫差發電的條件。
The purpose of this research is to examine the different properties of solar tracking systems under different environment variables as well as the deriving impacts and potential applications of solar energy. In the first part of the research, solar tracking systems were set up and solar tracking accuracy was set at a 0.1o tolerance. Subsequently, in order to examine different environment variables at different locations, solar cells comprised of monocrystalline silicon and concentrator photovoltaics (III-V compound semiconductor) were installed at two locations: College of Photonics, National Chiao Tung University, Gaofa 3rd Road, Guiren District, Tainan City (GPS location: 22.925507, 120.294795; Environment A) and College of Science and Engineering Building, National Dong Hwa University (GPS location: 23.899377, 121.544335; Environment B). According to the research results, although the global pyranometer reading at Environment A (814.6W/m2) was much higher than that of Environment B (559.4W/m2), both concentrator photovoltaics generated a maximum power of approximately 0.54W. This was preliminarily attributed to the larger particulate matters at Environment A as compared to Environment B, resulting in increased scattered radiation, also known as diffuse. On the other hand, the pyranometer readings of the monocrystalline silicon-based solar tracking system were directly proportional to the maximum power of the solar cells, which suggests that the concentrator photovoltaics were greatly affected by diffuse irradiance.

In the second part of our research, we integrated thermoelectric power generating modules with the concentrator photovoltaics system to examine the deriving impacts and potential applications of solar energy. Our research findings show that when solar irradiation is 740W/m2 and passive air cooling is utilized (using only fins), the initial power generated by the thermoelectric power generating modules is 0.18 mW. This decreases to 0 when the measurement time reaches 15 min, which may be attributable to the fact that passive air cooling cannot maintain the cold end temperature of the thermoelectric power generating modules over a prolonged period of time, ultimately resulting in a zero temperature difference across both ends, meaning that thermal equilibrium is reached. Going forward, an active cooling model (fans) was used to assess the efficiency of the concentrator photovoltaics system integrated with thermoelectric power generating modules. Research results show that active cooling fans running on 12V with a rotation speed of 2500-3500 RPM can effectively maintain the temperature difference across the thermoelectric power generating module (maximum 55oC) and generate 0.045W of thermoelectric power.

Finally, Autodesk CFD was applied to simulate thermal conduction in order to assess the optimal active/passive design solutions. Simulation results indicate that under the passive cooling model, by utilizing a cooling fin design of 280mm*80mm*40mm, a stable thermoelectric power generation condition with a 44 oC temperature difference can be maintained.
中文摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 X
第一章 序論 1
1-1國內外太陽能電池發展現況 1
1-2太陽能電池概念與特性 7
1-2-1太陽能電池原理與特性 7
1-2-2聚光型太陽能電池 8
1-2-3環境因素對太陽能發電系統影響 10
1-3研究動機與目的 12
第二章 實驗 13
2-1 研究系統架構 13
2-2實驗器材 14
2-2-1雙軸式追日系統之結構與原理 14
2-2-2菲涅爾透鏡結構與原理 21
2-2-3 聚光型太陽電池 22
2-2-4 氣候與環境設定 26
2-2-4-1花蓮地區之氣候與環境設定 26
2-2-4-2台南地區之氣候與環境設定 28
2-3光電特性量測、熱模擬與太陽電池效能分析 31
第三章 聚光型太陽能系統之特性研究暨熱管理與應用探討 41
3-1聚光型追日系統之特性研究 41
3-1-1追日型系統精準度對太陽能電池的電池性能比較 42
3-1-2 聚光型太陽能電池系統於不同環境變量之特性研究 45
3-1-3 單晶矽太陽能電池於不同環境變量之特性研究 52
3-2聚光型太陽能系統之熱管理與應用研究 56
3-2-1 聚光型太陽能系統之溫差發電晶片主/被動式熱管理研究 56
3-2-2 聚光型太陽能系統整合溫差發電晶片晶片之效能分析 63
3-2-3鋁鰭排之主被動散熱模擬 69
第四章 總結論 77
參考文獻 80
[1] Cătălin GeorgePopovici , Sebastian Valeriu Hudişteanu , Theodor DorinMateescu , Nelu-Cristian Cherecheş” Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks” Energy Procedia .Volume 85, January 2016, Pages 425-432
[2] ManjuSanthakumari , NetramaniSagar ”A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques”
Renewable and Sustainable Energy Reviews Volume 110, August 2019, Pages 83-100
[3] M. Wiesenfarth , I. Anton , and A. W. Bett ”Challenges in the design of concentrator photovoltaic (CPV) modules to achieve highest efficiencies” APPLIED PHYSICS REVIEWS 5, 041601 (2018)
[4] B.Orr , A.Akbarzadeh , M.Mochizuki, R. Singh ”A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes” Applied Thermal Engineering Volume 101, 25 May 2016, Pages 490-495
[5] U.S. Department of Energy by the Midwest Research Institute, “Basic Photovoltaic Principles and Me1hods”, Technical Information Office Solar Energy Research Institute, SERI/SP-290-1448, 1982.
[6] Fraunhofer ISE, Study: Levelized Cost of Electricity - Renewable Energy Technologies - Fraunhofer ISE (2013)
[7] R. Angel, T. Stalcup, B. Wheelwright, S. Warner, K. Hammer, and M. Frenkel, “Shaping solar concentrator mirrors by radiative heating,” in SPIE Proceedings Vol. 9175. High and Low Concentrator Systems for Solar Energy Applications IX (SPIE, 2014), 91750B - 91750B-6.
[8] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt., Res. Appl. 24 (1), 3–11 (2016).
[9] F. Dimroth, T. N. D. Tibbits, M. Niemeyer, F. Predan, P. Beutel, C. Karcher, E. Oliva, G. Siefer, D. Lackner, P. Fus-Kailuweit, A. W. Bett, R. Krause, C. Drazek, E. Guiot, J. Wasselin, A. Tauzin, and T. Signamarcheix, “Four-Junction Wafer-Bonded Concentrator Solar Cells,” IEEE J. Photovolt. 6 (1), 343–349 (2016).
[10] S. van Riesen, M. Neubauer, A. Boos, M. M. Rico, C. Gourdel, S. Wanka, R. Krause, P. Guernard, and A. Gombert, “New module design with 4-junction solar cells for high efficiencies,” in (AIP, 2015), Vol. 1679, p. 100006.
[11] Application of waste heat recovery of thermal energy-Hao-Rong Yue
[12] 陳君庭,單晶矽、多晶矽與非晶矽太陽電池之探討比較(2008)
[13] Ehsanul Kabir , Sandeep Kumar , Pawan Kumar , Adedeji Adebukola Adelodun ”Solar energy: Potential and future prospects” in Renewable and Sustainable Energy Reviews 82 · September 2017
[14] W. T. Xie, Y. J. Dai, R. Z. Wang, K. Sumathy, ”Concentrated solar energy
applications using Fresnel lenses: A review”,Renewable and Sustainable
Energy Reviews,15(2011)2588-2606
[15] 蔡顯修. 李建平. 林武煌. 黃哲信. 郭泰均 . 蔡德明”Research on the Impacts of Fine Particles Emitted by Thermal Power
Plants and Their Control Strategies “台電工程月刊 792 2014.08 頁91-99
[16] 江志宏”Concentrator Photovoltaic” (2008/09/22 )
[17] 晶泰科技溫差發電晶片型號SP184827145SA之詳細參數
[18] 原廠聚光型太陽能電池與矽晶太陽能電池之隨溫度效率變化圖(from:晶泰科技)
[19] 黃振東、徐振庭,科學發展,溫差發電材料,486期,2013年6月。
[20] 台電資訊網歷屆資料-107年各縣市太陽光電容量因數
[21] MarkBaldry, Victoria Timchenko, Chris Menictas, “ Optimal design of a natural convection heat sink for small thermoelectric cooling modules ” , Applied Thermal Engineering Volume 160, September 2019, 114062.
[22] Ji Dongxu, Wei Zhongbao, Josep Pouc, Stefano Mazzoni , SritharRajoo , Alessandro Romagnolie ,“ Geometry optimization of thermoelectric modules: Simulation and experimental study ”, Energy Conversion and Management Volume 195, 1 September 2019, Pages 236-2431 September 2019, Pages 236-243.
[23] Weishu Liu, Shengqiang Bai,“ Thermoelectric interface materials: A perspective to the challenge of thermoelectric power generation module ”, Journal of Materiomics Volume 5, Issue 3, September 2019, Pages 321-336September 2019, Pages 321-336.
[24] Hesham Khalil, Hamdy Hassan,“ Enhancement thermoelectric generators output power from heat recovery of chimneys by using flaps ”, Journal of Power Sources Volume 443, 15 December 2019, 22726615 December 2019, 227266.
[25] Roonak Daghigh, Yavar Khaledian,“ Effective design, theoretical and experimental assessment of a solar thermoelectric cooling-heating system ”, Solar Energy Volume 162, 1 March 2018, Pages 561-5721 March 2018, Pages 561-572.
[26] Aarti Kane, Vishal Verma, Bhim Singh,“ Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel ”, Renewable and Sustainable Energy Reviews Volume 75, August 2017, Pages 1295-1305.
[27] Ping Fu, Wei Qin, Shengqiang Bai, Dong Yang, Lidong Chen, Xin Guo, Can Li,“ Integrating large-area perovskite solar module with thermoelectric generator for enhanced and stable power output ”, Nano Energy Volume 65, November 2019, 104009November 2019, 104009.
[28] A.Faddouli, H.Labrim, S.Fadili, A.Habchi, B.Hartiti, M.Benaissa, M.Hajji, H.EZ-Zahraouy, E.Ntsoenzok, A.Benyoussef,“ Numerical analysis and performance investigation of new hybrid system integrating concentrated solar flat plate collector with a thermoelectric generator system ”, Renewable Energy Volume 147, Part 1, March 2020, Pages 2077-2090.
[29] Ganghoo Lee, Myunghun Shin, Gi yong Lee, Hyungduk Ko,“ High-efficiency white-light solar window using waveguide glass plate ”, Energy and Buildings Volume 202, 1 November 2019, 1093411 November 2019, 109341.
[30] Jong Hoon Lee, Kwan Hong Min, Min Gu Kang , Kyung Taek Jeong , Jeong In Lee, Hee-eun Song, Sungeun Park, Jin-Seong Park,“ Efficiency characteristics of a silicon oxide passivation layer on p-type crystalline silicon solar cell at low illumination ”, Current Applied Physics Volume 19, Issue 6, June 2019, Pages 683-689June 2019, Pages 683-689.
[31] Mahelet G.Fikru,“ Electricity bill savings and the role of energy efficiency improvements: A case study of residential solar adopters in the USA ”, Renewable and Sustainable Energy Reviews Volume 106, May 2019, Pages 124-132May 2019, Pages 124-132.
[32] Arunima Sethi, Subhash Chandra, Hind Ahmed, Sarah McCormack,“ Broadband plasmonic coupling and enhanced power conversion efficiency in luminescent solar concentrator ”, Solar Energy Materials and Solar Cells Volume 203, December 2019, 110150December 2019, 110150.
[33] Shenghan Wang, Shengnan Duan, Yuwei Wang, Chenglin Sun, Xiao-Feng Wang, Shin-ichi Sasaki,“ Chlorophyll-based organic solar cells with improved power conversion efficiency ”, Journal of Energy Chemistry Volume 38, November 2019, Pages 88-93November 2019, Pages 88-93.
[34] Mehdi Mehrpooya, Bahram Ghorbani, Seyed Sina Hosseini, “ Thermodynamic and economic evaluation of a novel concentrated solar power system integrated with absorption refrigeration and desalination cycles ”, Energy Conversion and Management Volume 175, 1 November 2018, Pages 337-3561 November 2018, Pages 337-356.
[35] Ilaria Bendato, Lucia Cassettari, Marco Mosca, Roberto Mosca,“ Stochastic techno-economic assessment based on Monte Carlo simulation and the Response Surface Methodology: The case of an innovative linear Fresnel CSP (concentrated solar power) system ”, Energy Volume 101, 15 April 2016, Pages 309-32415 April 2016, Pages 309-324.
[36] Xinquan Zhang, Rui Huang, Kui Liu, A. Senthil Kumar, XuechuanShan,“ Rotating-tool diamond turning of Fresnel lenses on a roller mold for manufacturing of functional optical film ”, Precision Engineering Volume 51, January 2018, Pages 445-457January 2018, Pages 445-457.
[37] Katie Shanks, Juan P.Ferrer-Rodriguezb, Eduardo F.Fernández, Florencia Almonacid, Pedro Pérez-Higueras, S.Senthilarasu, Tapas Mallick,“ A >3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell ”, Solar Energy Volume 169, 15 July 2018, Pages 457-46715 July 2018, Pages 457-467.
[38] M.Hasan Nia, A.Abbas Nejad, A.M.Goudarzi, M.Valizadeh, P.Samadian,“ Cogeneration solar system using thermoelectric module and fresnel lens ”, Energy Conversion and Management Volume 84, August 2014, Pages 305-310August 2014, Pages 305-310.
[39] Thorsten Hornung, Marc Steiner, Peter Nitz,“ Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system”, Solar Energy Materials and Solar Cells Volume 99, April 2012, Pages 333-338April 2012, Pages 333-338.
[40] D.A.Flores-Hernández, S.Palomino-Resendiz, N.Lozada-Castillo, A.Luviano-Juárez, []I.Chairez,“ Mechatronic design and implementation of a two axes sun tracking photovoltaic system driven by a robotic sensor ” ,Mechatronics Volume 47, November 2017, Pages 148-159.
[41] S.C.Shen, P.C.Tsai, Y.J.Wang, H.J.Huang,“ A new type of multi-degree-of-freedom miniaturization actuator using symmetric piezoelectric pusher element for a pocket sun-tracking system ”, Sensors and Actuators A: Physical Volume 182, August 2012, Pages 114-121August 2012, Pages 114-121.
[42] Sabir Rustemli, Furkan Dincer, Emin Unal, Muharrem Karaaslan, Cumali Sabah,“ The analysis on sun tracking and cooling systems for photovoltaic panels ” ,Renewable and Sustainable Energy Reviews Volume 22, June 2013, Pages 598-603June 2013, Pages 598-603.
[43] Ali Al-Mohamad, “ Efficiency improvements of photo-voltaic panels using a Sun-tracking system ” ,Applied Energy Volume 79, Issue 3, November 2004, Pages 345-354November 2004, Pages 345-354.
[44] Soteris A.Kalogirou,“ Design and construction of a one-axis sun-tracking system ”, Solar Energy Volume 57, Issue 6, December 1996, Pages 465-469.
[45] Yuwaldi Away, M.Ikhsan,“ Dual-axis sun tracker sensor based on tetrahedron geometry ”, Automation in Construction Volume 73, January 2017, Pages 175-183.
[46] Abderrahmane Bairi,“ Method of quick determination of the angle of slope and the orientation of solar collectors without a sun tracking system ”, Solar & Wind Technology Volume 7, Issues 2–3, 1990, Pages 327-3301990, Pages 327-330.
[47] Wafa Batayneh, Ahmad Bataineh, Ibrahim Soliman, Saleh Abed Hafees,“ Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection ”, Automation in Construction Volume 98, February 2019, Pages 102-109February 2019, Pages 102-109.
[48] Guillermo Quesada, Laura Guillon, Daniel R.Rousse, Mostafa Mehrtash, Yvan Dutil, Pierre-Luc Paradis,“ Tracking strategy for photovoltaic solar systems in high latitudes ”, Energy Conversion and Management Volume 103, October 2015, Pages 147-156October 2015, Pages 147-156.
[49] Lizbeth Salgado-Conrado,“ A review on sun position sensors used in solar applications ”, Renewable and Sustainable Energy Reviews Volume 82, Part 3, February 2018, Pages 2128-2146.
[50] Huaping Sun, Bless Kofi Edziah, Chuanwang Sun, Anthony Kwaku Kporsu,“ Institutional quality, green innovation and energy efficiency ”, Energy Policy Volume 135, December 2019, 111002December 2019, 111002.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *