帳號:guest(3.145.100.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:卓宗霖
作者(英文):Tsung-Lin Cho
論文名稱:應用電子票證資料於偏鄉公車服務改善之策略
論文名稱(英文):Rural Area Public Transportation Bus Service System Improvement by Using Smart Card Data
指導教授:褚志鵬
指導教授(英文):Chih-Peng Chu
口試委員:陳正杰
王中允
口試委員(英文):Cheng-Chieh, Frank, Chen
Chung-Yung Wang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:企業管理學系
學號:610632003
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:83
關鍵詞:k-平均演算法聚類分析算法悠遊卡資料分析
關鍵詞(英文):K-means algorithmDBSCAN algorithmsmart carddata analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏收藏:0
大眾交通運輸在偏鄉地區無論是涵蓋率或是發車頻率都比不上都市區域,除此之外,站與站之間的距離也相當的遙遠。本篇研究主要著重在於提升大眾交通運輸的乘客滿意度並且同時間減少公路客運公司的營運成本。
在本篇研究,首先我們使用鼎東客運2016年的電子票證資料進行研究分析,除了研究乘客的搭乘行為以外,也利用k-平均演算法和聚類分析算法進行時間以及空間的分析。而本篇研究將分群的做法分成兩個部分。第一部分利用k-平均演算法找出學生乘客於一天當中搭乘率最高的不同時間區間,讓我們能夠輕易地找出學生乘客搭乘的尖峰時段,第二部分則利用平均演算法和聚類分析算法找出新的區間客運服務路線。最後的結果顯示,兩種不同的方式分別可以減少公路客運公司在早上尖峰時段45%以及35%的成本,同時間又能夠滿足超過80%以上的乘客需求。
Public transportation routes coverage rate and frequency of service in rural area are usually much lower than those in urban area; in addition to these problems, distances between service bus stops are often far away in rural area. This study aims not only to improve passenger satisfaction but also to reduce bus company operation costs.

In this study, we first analyze the passengers’ travel pattern through the smart card data within the studied area from Diingdong bus corporation smart card data in 2016. A data mining technique with K-means algorithm and Density-based spatial clustering of applications with noise (DBSCAN) are applied to determine the appropriate number of clusters of bus stops. This study would run two step cluster. First step would use K-means algorithm to cluster different time zone about student passenger behavior. It would help to know the peak-hour in a day. Step two would use K-means algorithm and DBSCAN to develop the new short-tern bus route service. The final results show that two different methods can reduce operation costs about 82% and 79%, while satisfying over 80% passengers need.
致謝 i
中文摘要 ii
Abstract i
Contents ii
List of Tables iv
List of Figures v
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Research Purpose 3
Chapter 2 Literature Review 6
2.1 Data mining in smart card 6
2.2 Smart card based research 8
2.2.1 Smart card fare system 8
2.2.2 Different smart card based research 9
Chapter 3 Model Formulation 15
3.1 Data source 15
3.2 Data Mining tools 16
3.2.1 K-means 16
3.2.2 Density-based spatial clustering of applications with noise 17
Chapter 4 Research Results 19
4.1 Temporal based research results 23
4.1.1 Routes temporal return service research results 23
4.1.2 Routes temporal departure service research results 29
4.2 Spatial based research results 35
4.2.1 Routes spatial return service results 35
4.2.2 Routes spatial departure service results 39
4.3 K-means algorithm results 41
4.4 DBSCAN algorithm results 44
4.5 Determine the two short-tern bus route service 46
Chapter 5 Conclusion and Suggestions 49
5.1 Conclusions 49
5.2 Management implications 49
5.3 Research limitations 50
5.4 Further study suggestions 50
Reference 52
Website 55
Appendix 56
English part

Agard, B., Morency, C., & Trépanier, M. (2006). Mining public transport user behaviour from smart card data. IFAC Proceedings Volumes, 39(3), 399-404.
Alsger, A., Assemi, B., Mesbah, M., & Ferreira, L. (2016). Validating and improving public transport origin–destination estimation algorithm using smart card fare data. Transportation Research Part C: Emerging Technologies, 68, 490-506.
Barry, J., Newhouser, R., Rahbee, A., & Sayeda, S. (2002). Origin and destination estimation in New York City with automated fare system data. Transportation Research Record: Journal of the Transportation Research Board(1817), 183-187.
Bhaskar, A., & Chung, E. (2015). Passenger segmentation using smart card data. IEEE Transactions on intelligent transportation systems, 16(3), 1537-1548.
Briand, A.-S., Côme, E., Trépanier, M., & Oukhellou, L. (2017). Analyzing year-to-year changes in public transport passenger behaviour using smart card data. Transportation Research Part C: Emerging Technologies, 79, 274-289.
Cui, A. (2006). Bus passenger origin-destination matrix estimation using automated data collection systems. Massachusetts Institute of Technology.
Chiu, Shih-Chun (2006). Exploring Smartcard and Data Mining to. Improve Bus Operation Strategies. Department of Transportation Technology and Logistic Management, Chung Hua University
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented at the Kdd.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
Gao, L.-X., Li, G.-y., Hu, J.-h., & Liang, J.-x. (2015). A calculation method of OD matrix in multi-modal transit network based on traffic big data. Paper presented at the Transportation Information and Safety (ICTIS), 2015 International Conference on.
Ghaemi, M. S., Agard, B., Trépanier, M., & Partovi Nia, V. (2017). A visual segmentation method for temporal smart card data. Transportmetrica A: Transport Science, 13(5), 381-404.
Gitanjali, J. (2016). Data mining from smart card data using data clustering. International Journal of Applied Engineering Research, 11(1), 347-352.
Gschwender, A., Munizaga, M., & Simonetti, C. (2016). Using smart card and GPS data for policy and planning: The case of Transantiago. Research in Transportation Economics, 59, 242-249.
He, L., Agard, B., & Trépanier, M. (2017). Comparing Time Series Segmentation Methods for the Analysis of Transportation Patterns with Smart Card Data. Retrieved from
He, L., & Trépanier, M. (2015). Estimating the Destination of Unlinked Trips in Transit Smart Card Fare Data. Transportation Research Record: Journal of the Transportation Research Board(2535), 97-104.
Hao-Wei Lin (2016). A Study on Applying the Big Data of Easy Card to Construct the Passengers' Travel Patterns of Public Transportation. Department of Transportation Management, Tamkang University
Kim, J., Corcoran, J., & Papamanolis, M. (2017). Route choice stickiness of public transport passengers: Measuring habitual bus ridership behaviour using smart card data. Transportation Research Part C: Emerging Technologies, 83, 146-164.
Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert systems with applications, 32(4), 995-1003.
Kleissner, C. (1998). Data mining for the enterprise. Paper presented at the System Sciences, 1998., Proceedings of the Thirty-First Hawaii International Conference on.
Kovalerchuk, B., & Vityaev, E. (2000). Data mining in finance. Advances in relational and hybrid methods, 100.
Kusakabe, T., & Asakura, Y. (2014). Behavioural data mining of transit smart card data: A data fusion approach. Transportation Research Part C: Emerging Technologies, 46, 179-191.
Kusiak, A. (2006). Data mining: manufacturing and service applications. International Journal of Production Research, 44(18-19), 4175-4191.
Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions. Paper presented at the KDD.
Ma, X., Liu, C., Wen, H., Wang, Y., & Wu, Y.-J. (2017). Understanding commuting patterns using transit smart card data. Journal of Transport Geography, 58, 135-145.
Ma, X., Wu, Y.-J., Wang, Y., Chen, F., & Liu, J. (2013). Mining smart card data for transit riders’ travel patterns. Transportation Research Part C: Emerging Technologies, 36, 1-12.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
Medina, S. A. O. (2016). Inferring weekly primary activity patterns using public transport smart card data and a household travel survey. Travel Behaviour and Society.
Morency, C., Trépanier, M., & Agard, B. (2006). Analysing the variability of transit users behaviour with smart card data. Paper presented at the Intelligent Transportation Systems Conference, 2006. ITSC'06. IEEE.
Morency, C., Trépanier, M., & Agard, B. (2007). Measuring transit use variability with smart-card data. Transport Policy, 14(3), 193-203.
Munizaga, M. A., & Palma, C. (2012). Estimation of a disaggregate multimodal public transport Origin–Destination matrix from passive smartcard data from Santiago, Chile. Transportation Research Part C: Emerging Technologies, 24, 9-18.
Pelletier, M.-P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557-568.
Ro, Wei-Yuan (2008). Using Taipei Easycard transation data to explore the O-D table of bus passengers. Department of Transportation Management, Tamkang University
Su, Ping-Che (2016). The Study of Estimating Bus Passenger Origin and Destination by Using Electronic Payment Data. Department of Transportation and Logistics Management, National Chiao Tung University
Wei, C.-P., & Chiu, I.-T. (2002). Turning telecommunications call details to churn prediction: a data mining approach. Expert systems with applications, 23(2), 103-112.
Zhong, C., Batty, M., Manley, E., Wang, J., Wang, Z., Chen, F., & Schmitt, G. (2016). Variability in regularity: Mining temporal mobility patterns in london, singapore and beijing using smart-card data. PloS one, 11(2), e0149222.

Website

Wikipedia
https://zh.wikipedia.org/wiki/DBSCAN

Taipei City Public Transportation Office website
http://www.pto.gov.taipei/ct.asp?xItem=1089010&ctNode=12599&mp=117041

Ministry of Transportation and Communications R.O.C.
https://www.motc.gov.tw/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *