帳號:guest(3.17.77.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林于鈞
作者(英文):Yu-Jyun Lin
論文名稱:我國個案電力公司的物流網路重整與最佳化
論文名稱(英文):Electric Power Logistics Network Optimizing and Reengineering in Taiwan
指導教授:陳正杰
指導教授(英文):Cheng-Chieh Chen
口試委員:盧宗成
褚志鵬
口試委員(英文):Chung-Cheng Lu
Chih-Peng Chu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:運籌管理研究所
學號:610637002
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:130
關鍵詞:區位選址物流網路設計中繼站的設置問題
關鍵詞(英文):Location-Allocation ProblemLogistics Network DesignTransfer Stations
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
隨著現代科技的進步,人類發明許多電器設備,讓生活更加舒適便利,也使得電力的應用愈來愈廣泛,而電力供應與現代生活已緊密地結合,穩定的供電來源維持著企業的營運及民生的需求,隨著每年用電量的攀升,電力的供應日趨嚴峻。有鑑於近年來我國電力系統因負荷過大而造成斷電事件頻傳,如何改善電力公司的物流輸配送系統,協助電力系統即時搶修完成,儼然成為個案電力公司亟需解決的重要課題。本研究透過重整個案電力公司的物流網路系統,希望能提昇輸配送系統效率,減少輸配送成本的支出,同時提出新增設施與設立中繼站等相關策略之比較分析,作為個案電力公司未來調整物流網路之參考。
本研究所探討之個案電力公司近年來物流存貨管理與輸配送成本居高不下,每年約虧損3-7億。由於電力公司物流網路及配送流程久未調整,隨著用電量上升及運輸成本增加的考驗,其物流網路型態已不足以反應需求的增加,亟需重新設計以符合目前市場。
本研究重新調整物流儲運中心(設施點)負責配送的各地區營業處(需求點)之區域,以實際運輸資料進行分析,應用p-median設施選址之模型,提出一混和整數規劃模型,以分枝界限法(Branch and Bound)來尋找最佳解,最小化儲運中心之總運輸距離、總延噸公里及總運輸成本。
實驗分析中,本研究分別採用中繼站之設計、儲運中心之輸配送工作量平衡及增設儲運中心之方法,針對目前輸配送網路進行改善。(1)中繼站設計:分配每個營業處之專責儲運中心,利用轉運的方法,考量現有營業處的位置,評估可做為中繼站的設施;(2)儲運中心之運量平衡:考量儲運中心之工作量分配公平性,追求儲運中心之運量平衡;(3)增設儲運中心:研議是否需要籌設新儲運中心,負責南區營業處的配送。根據上述三個方法,比較現有輸配送網路及本研究設置網路之差異,提出最有效率的營運模式。
從分析結果可知,雖然增設儲運中心之改善效果優於建立中繼站之方法,可使營業處配送旅程之距離有效縮短,也使儲運中心總運輸距離大幅減少,但建設一個儲運中心的成本較為高昂,建議個案電力公司可納入長期改善方案,而短期改善輸配送網路之策略,本研究認為以採用中繼站方法為現階段最有效率與成效之作法,藉由轉運方式使里程數及總延噸公里達到明顯改善效果。
Due to the advancement of technology in recent years, many electrical devices shift life more comfortable and convenient, and the applications of electricity become more and more popular. A steady electricity supply system maintains the operations of companies and people daily needs. However, with the increasing of annually electricity consumptions, stable supply of electricity becomes a challenging issue in Taiwan.
This study aims to improving the logistics network of electric power system in Taiwan. The studied company needs to transport a large amount of materials across the country. In recent years, the costs of inventory management and material distribution remained high, especially the studied logistics network and distribution system have not been adjusted for a long time.
In this study, we re-design the existing electric power logistics networks, to establish a shipping pattern that minimizes total transportation distance and cost for the transportation center. We apply the p-median facility location model with flow balancing constraints and medium transfer stations to optimize the logistics network.
In addition, we consider the design of transfer stations within the studied network, the balance of transportation volume, and the set up of new logistics center to improve current network operations. While considering the location of existing demand points, we evaluate as the performances of candidate transfer stations and choose the best and second best stations. Moreover, we pursue the balance of transportation volume, so as to achieve the equity of workload among logistic centers. Finally, new logistic centers are evaluated for the distribution of demand points in the south area.
Based on the analysis results, although the method of adding a new logistics center is better than setting transfer stations, it should be noted that the cost of building a new center is extremely higher than setting transfer stations. The studied company needs to evaluate multiple factors and long-term planning. For the short-term planning, this study considers that adopting the method of transfer station is the most efficient and useful at current stage.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 7
1.3 研究範圍與對象 8
1.4 研究流程 9
第二章 文獻回顧 11
2.1 設施選址問題 (Facility Location Problem) 11
2.1.1 P-中位問題 (P-Median Problem) 13
2.1.2 P-中心問題 (P-Center Problem) 14
2.1.3 覆蓋問題 (Covering Problem) 15
2.1.4 區位集合覆蓋問題 (Location Set Covering Problem, LSCP) 16
2.1.5 最大覆蓋區位問題 (Maximal Covering Location Problem, MCLP)
17
2.1.6 設施選址問題評析 18
2.2 網路設計問題 (Network Design Problem) 19
2.3 中繼站設置問題 24
2.4 求解方法 25
2.5 小結 26
第三章 研究方法 29
3.1 研究課題 29
3.2 模型建構 31
3.2.1 研究模型假設 32
3.2.2 參數設定 32
3.2.3 模型建立 33
第四章 案例分析 37
4.1 電力公司實際營運情況 37
4.2 月份資料測試 39
4.2.1 依運送距離分區 39
4.2.2 中繼站 52
4.3 全年度資料 60
4.3.1 依運送距離分區 60
4.3.1.1 營業處 60
4.3.1.2 儲運中心 71
4.3.2 中繼站延伸議題 73
4.3.3 儲運中心之運量平衡 80
4.3.4 增設儲運中心 91
4.3.4.1 依運送距離分區 92
4.3.4.1.1 營業處 95
4.3.4.1.2 儲運中心 101
4.3.4.2 儲運中心之運量平衡 102
4.3.5考量配送成本 106
4.3.5.1 營業處 108
4.3.5.2 儲運中心 117
第五章 結論與建議 119
5.1 結論 119
5.2 管理意涵 121
5.3 未來研究建議 124
參考文獻 127
古澤民。(民100)。穩健節點p中心模式於緊急救災物資配送中心區位選擇之應用。臺北科技大學工業工程與管理研究所碩士論文,台北市。
林宏晉。(民93)。不確定因素考量下之都市鄰里公園區位選擇研究。朝陽科技大學建築及都市設計研究所碩士論文,台中市。
張立妍。(民102)。考量路網實際距離之設施區位選址研究 -以舊臺中市垃圾焚化廠為例。逢甲大學都市計畫與空間資訊學系碩士論文,台中市。
經濟部能源局–油價資訊管理與分析系統。檢自https://www2.moeaboe.gov.tw/oil102/。
經濟部能源局–能源統計資料查詢系統。檢自https://www.moeaboe.gov.tw/wesnq/Views/D01/wFrmD0101.aspx。
廖晉廷。(民100)。動態停車場區位選擇之研究。朝陽科技大學建築及都市設計研究所碩士論文,台中市。
Ambrosino, D. and Scutellà, M. G. (2005). Distribution network design: New problems and related models. European Journal of Operational Research, Vol. 165(3), pp. 610-624.
Blanquero, R., Carrizosa, E., and G.-Tóth, B. (2016). Maximal Covering Location Problems on networks with regional demand. Omega, Vol. 64, pp. 77-85.
Ceria, S., Nobili, P., and Sassano, A. (1998). A lagrangian-based heuristic for large-scale set covering problems. Mathematical Programming, Vol. 81(2), pp. 215-228
Christensen, T. R.L. and Labbé, M. (2015). A branch-cut-and-price algorithm for the piecewise linear transportation problem. European Journal of Operational Research, Vol. 245(3), pp. 645-655.
Church, R. L. and ReVelle, C. S. (1974). The Maximal Covering Location Problem. Papers in Regional Science, Vol. 32(1), pp. 101-118.
Church, R. L. and ReVelle, C. S. (1976). Theoretical and computational links between the p-median location set-covering and the maximal covering location problem. Geographical Analysis, Vol. 8, pp.406-415.
Contreras, I. and Fernández, E. (2012). General network design: A unified view of combined location and network design problems. European Journal of Operational Research, Vol. 219(3), pp. 680-697.
Contreras, I., Fernandez, E., and Reinelt, G. (2012). Minimizing the maximum travel time in a combined model of facility location and network design. Omega, Vol. 40(6), pp. 847-860.
Curtin, K.M., Hayslett, K., and Qiu, F. (2007). Determining optimal police patrol areas with maximal covering and backup covering location models. Networks and Spatial Economics, Vol. 10(1), pp. 125-145.
Fazel Zarandi, M.H. Davari, S., Haddad Sisakht, S.A. (2011). The large scale maximal covering location problem. Scientia Iranica, Vol. 18(6), pp. 1564-1570.
Hakimi, S. L. (1964). Optimum Locations of Switching Centers and the Absolute Centers and Medians of graph. Operations Research, Vol. 12(3), pp. 450-459.
Karatas, M., Razi, N., and Tozan, H. (2016). A Comparison of p-median and Maximal Coverage Location Models with Q–coverage Requirement. Procedia Engineering, Vol. 149, pp. 169-176.
Karimi, H., and Bashiri, M. (2011). Hub covering location problems with different coverage types. Scientia Iranica, Vol. 18(6), pp. 1571-1578.
Kartal, Z., Hasgul, S., and Ernst, A. T. (2017). Single allocation p-hub median location and routing problem with simultaneous pick-up and delivery. Transportation Research Part E: Logistics and Transportation Review, Vol. 108, pp. 141-159.
Klincewicz, J. G., Luss, H. and Rosenberg, E. (1986). Optimal and heuristic algorithms for multiproduct uncapacitated facility location. European Journal of Operational Research, Vol. 26(2), pp 251-258.
Konak, A. (2012). Network design problem with relays: A genetic algorithm with a path-based crossover and a set covering formulation. European Journal of Operational Research, Vol. 218(3), pp. 829-837.
Liu, F. (2017). A greedy algorithm for solving ordinary transportation problem with capacity constraints. Operations Research Letters, Vol. 45(4), pp. 388-391.
Lu, C. (2013). Robust weighted vertex p-center model considering uncertain data: An application to emergency management. European Journal of Operational Research, Vol. 230, pp. 113-121.
Lutter, P., Degel, D., Büsing, C., Koster, A. M. C. A., and Werners, B. (2017). Improved handling of uncertainty and robustness in set covering problems. European Journal of Operational Research, Vol. 263(1), pp. 35-49.
Magnanti, T. L. and Wong, R.T. (1984). Network design and transportation planning: models and algorithms. Transportation Science, Vol. 18(1), pp. 1-55.
Melkote, S. and Daskin, M. S. (2001). Capacitated facility location/network design problems. European Journal of Operational Research, Vol. 129(3), pp. 481-495.
Murawski, L., and Church, R.L. (2009). Improving accessibility to rural health services: the maximal covering network improvement problem. Socio-Economic Planning Sciences, Vol. 43(2), pp. 102-110.
Murray, A. T. and Wei, R. (2013). A computational approach for eliminating error in the solution of the location set covering problem. European Journal of Operational Research, Vol. 224(1), pp. 52-64.
Owen, S. H., and Daskin, M. S. (1998). Strategic facility location: A review. European Journal of Operational Research, Vol. 111(3), pp. 423-447.
Richard, D., Beguin, H., and Peeters D. (1990). The location of fire stations in a rural environment: a case study. Environment and Planning, Vol. 22, pp. 39-52.
Rodríguez-Martín, I., Salazar-González, J-J. & Yaman, H. (2016). Hierarchical Survivable Network Design Problems. Electronic Notes in Discrete Mathematics, Vol. 52, pp. 229-236.
Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E. (2009). Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies, third edition, pp. 85-87. New York: McGraw-Hill Higher Education.
Toregas, C., Swain, R., ReVelle, C., and Bergman, L. (1971). The Location of Emergency Service Facilities. Operations Research, Vol.19(6), pp.1363-1373.
Wei, H., Murray, A. T., and Xiao N. (2006). Solving the continuous space p-center problem: planning application issues. IMA Journal of Management Mathematics, Vol.17(4), pp. 413-425.
White, J. A., and Case, K. E. (1974). On Covering Problems and the Central Facilities Location Problem. Geographical Analysis, Vol. 6(3), pp. 281-294.
Xie, F. and Jia, R. (2012). Nonlinear fixed charge transportation problem by minimum cost flow-based genetic algorithm. Computers & Industrial Engineering, Vol. 63(4), pp. 763-778.
Yıldız, B., Karaşan, O. E. and Yaman, H. (2018). Branch-and-price approaches for the network design problem with relays. Computers & Operations Research, Vol. 92, pp. 155-169.
Zhang, B., Peng, J., and Li, S. (2017). Covering location problem of emergency service facilities in an uncertain environment. Applied Mathematical Modelling, Vol. 51, pp. 429-447.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *