帳號:guest(3.148.105.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:力華暐
作者(英文):Hua-Wei Li
論文名稱:供需互動下線上購物配銷策略
論文名稱(英文):Distribution Strategy of Online Shopping under Supply - Demand Interaction
指導教授:李慧潔
指導教授(英文):Hui-Chieh Li
口試委員:盧宗成
褚志鵬
口試委員(英文):Tsung-Cheng Lu
Chih-Peng Chu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:運籌管理研究所
學號:610637008
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:85
關鍵詞:線上購物供需互動配送頻次實體零售店
關鍵詞(英文):e-CommerceSupply and Demand InteractionDelivery FrequencyPhysical Retail Store
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏收藏:0
在傳統零售購物之實體配送部分,過去已有大量文獻在假設消費者需求為外生已知或需求空間均勻分佈之條件下,考慮運銷成本包括運輸成本與存貨成本,且兩者隨運送頻率的增加成反向變動,探討此兩項成本的權衡取捨,並進一步探討企業配送頻率、運送規模、配銷網路與設施配置問題。線上購物之相關研究上,大多偏重於探討影響消費者購物意願因素,然而消費者線上購物意願實與電子商務業者提供之服務有極密切之關係,但是以電子商務業者角度來探討線上購物之文獻較少,且構建兩者供需互動模式來探討之間關係的研究則尚付闕如。
本研究以供需互動為限制式,使電子商務業者決策配送策略前,需考量消費者效用為先,並放棄過去需求量以給定,以最小化配銷成本為決策目標式,改以考量供需互動之下之最大化利潤為基準進行求解。並且將配送策略延伸至與有無考量供需互動、有無考量分區決策以及與宅配服務之利潤比較。範例分析之結果顯示,本研究所制定之配送策略,於有無考量供需互動、有無考量分區決策以及與宅配服務比較之下,皆能得到較好的結果。
本研究針對考量供需互動之配送策略所建構之數學規劃式,為過去研究未曾深入探討者,而模式求解結果亦證明其結果較不考慮供需互動之傳統模式優越,可提供未來相關研究之參考。而實務上,可提供擁自有車隊之電子商務業者作各種配送策略擬定之參考,並可作為業者進行成本分析之基礎。
In the physical distribution portion of traditional retail shopping, there is a lot of literature assuming that consumer demand is exogenously known, or that market demand is uniformly distributed. Most of the past research has been based on the above criteria for considering the cost of delivery, including the cost of transportation and the cost of inventory. The trade-off between these two factors is investigated, and the two factors change inversely as the delivery frequency increases. The trade-offs between these two costs are explored, and the issues of delivery frequency, delivery scale, network and facility configuration are further explored.
Most of the research studies on online shopping focus on the factors that influence consumers' motivation to shop, but there is a close relationship between consumers' motivation to online shopping and the services provided by e-commerce firms, but there is few literature on online shopping from the perspective of e-commerce firms, and few researches on the relationship between the two models that interact with supply and demand.
This research is based on the limitation of the supply and demand interaction, which requires e-commerce firms to consider the consumer's utility before deciding on distribution strategies, and to abandon the past decision process in which the demand is exogenously given and minimizes distribution costs.The solution is based on the maximize profit under the supply-demand interaction.
This research builds a mathematical model for the distribution strategy that considers the supply-demand interaction, which has not been explored by previous studies. The solution result also indicates that it is better than the traditional model that ignores the supply-demand interaction and can be used as a reference for future research. In practice, it can provide e-commerce firm with their own fleets with reference to the formulation of various types of distribution strategies and can be used as the basis for cost analysis.
第一章 緒論 1
第二章 文獻回顧 11
第三章 研究方法 31
第四章 範例分析 49
第五章 結論與建議 69
1.Achillas, C., et al. (2010). Optimising reverse logistics network to support policy-making in the case of electrical and electronic equipment. Waste Management, 30(12): 2592-2600.
2.Agrawal, S.,R. K. Singh (2019). Analyzing disposition decisions for sustainable reverse logistics: Triple Bottom Line approach. Resources, Conservation and Recycling, 150: 104448.
3.Alım, M.,P. Beullens (2020). Joint inventory and distribution strategy for online sales with a flexible delivery option. International Journal of Production Economics, 222: 107487.
4.Alım, M.,P. Beullens (2019). Joint inventory and distribution strategy for online sales with a flexible delivery option. International Journal of Production Economics: 107487.
5.Azizi, V., et al. (2020). A two-stage stochastic programming model for multi-period reverse logistics network design with lot-sizing. Computers & Industrial Engineering: 106397.
6.Baiman, S., et al. (2000). Information, contracting, and quality costs. Management Science, 46(6): 776-789.
7.Blumberg, D. F. (1999). Strategic examination of reverse logistics & repair service requirements, needs, market size, and opportunities. Journal of business logistics, 20(2): 141.
8.Bonifield, C., et al. (2010). Product returns on the internet: a case of mixed signals? Journal of Business Research, 63(9-10): 1058-1065.
9.Burns, L. D., et al. (1985). Operations research, 33(3): 469-490.
10.Daganzo, C. F.,G. F. Newell (1985). Physical distribution from a warehouse: Vehicle coverage and inventory levels. Transportation Research Part B: Methodological, 19(5): 397-407.
11.Dat, L. Q., et al. (2012). Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products. Expert Systems with Applications, 39(7): 6380-6387.
12.Daugherty, P. J., et al. (2001). Reverse logistics: the relationship between resource commitment and program performance. Journal of business logistics, 22(1): 107-123.
13.Davis, S., et al. (1995). Money back guarantees: Helping retailers market experience goods. Journal of Retailing, 72(2): 7-22.
14.Davis, S., et al. (1998). Return policies and the optimal level of “hassle”. Journal of Economics and Business, 50(5): 445-460.
15.Ding, J.-F., et al. (2005). A fuzzy multi-criteria decision-making model for the selection of courier service providers: An empirical study from shippers' perspective in Taiwan. Maritime Economics & Logistics, 7(3): 250-261.
16.Dutta, P., et al. (2020). A multiobjective optimization model for sustainable reverse logistics in Indian E-commerce market. Journal of Cleaner Production, 249: 119348.
17.Fleischmann, M., et al. (1997). Quantitative models for reverse logistics: A review. European Journal of Operational Research, 103(1): 1-17.
18.Fleischmann, M., et al. (2000). A characterisation of logistics networks for product recovery. Omega, 28(6): 653-666.
19.Foscht, T., et al. (2013). Retaining or returning? Some insights for a better understanding of return behaviour. International Journal of Retail & Distribution Management, 41(2): 113-134.
20.Guide, J. V.,L. N. Van Wassenhove (2002). The reverse supply chain. Harvard Business Review, 80(2): 25-26.
21.Hart (1988). The power of unconditional service guarantees. Harvard Business Review, 66: 36-43.
22.Hsu, C. I.,I. J. Tsai (1999). Logistics cost, consumer demand, and retail establishment density. Papers in Regional Science, 78(3): 243-263.
23.Janakiraman, N.,L. Ordóñez (2012). Effect of effort and deadlines on consumer product returns. Journal of Consumer Psychology, 22(2): 260-271.
24.Jin, D., et al. (2019). Omni-channel retailers’ return policy strategies in the presence of competition. International Journal of Production Economics: 107595.
25.Johnson James, C.,F. Wood Donald Contemporary Logistics, Prentice-Hall, Inc, New Jersey.
26.Lee, H.-S., et al. (2005). Method for calculating schedule delay considering lost productivity. Journal of Construction Engineering and Management, 131(11): 1147-1154.
27.Li, G., et al. (2019). Return strategy and pricing in a dual-channel supply chain. International Journal of Production Economics, 215: 153-164.
28.Li, J., et al. (2020). Implications of matching and pricing strategies for multiple-delivery-points service in a freight O2O platform. Transportation Research Part E: Logistics and Transportation Review, 136: 101871.
29.LI, L., et al. (2009). Model and Algorithm for Distribution/Delivery of Goods on Order in B2C E-commerce Journal of Northeastern University (Natural Science), 11.
30.Li, T., et al. (2019). Consumer return policies in presence of a P2P market. Omega: 102092.
31.Liao, W., et al. (2020). Multi-objective green meal delivery routing problem based on a two-stage solution strategy. Journal of Cleaner Production: 120627.
32.Lin, J.-Y. (2003). A Research of the Effects of Reverse Logistics and Mobile Commerce on Customer Values. 90.
33.Miller, J. G.,A. V. Roth (1994). A taxonomy of manufacturing strategies. Management Science, 40(3): 285-304.
34.Mittal, A. (2013). E-commerce: It’s Impact on consumer Behavior. Global Journal of Management and Business Studies, 3(2): 131-138.
35.Nobari, A., et al. (2019). Considering chain to chain competition in forward and reverse logistics of a dynamic and integrated supply chain network design problem. Journal of Industrial and Systems Engineering, 12(1): 147-166.
36.Pinheiro, E., et al. (2019). How to identify opportunities for improvement in the use of reverse logistics in clothing industries? A case study in a Brazilian cluster. Journal of Cleaner Production, 210: 612-619.
37.Rai, H. B., et al. (2019). City logistics in an omnichannel environment. The case of Brussels. Case Studies on Transport Policy, 7(2): 310-317.
38.Reddy, K. N., et al. (2020). Effect of carbon tax on reverse logistics network design. Computers & Industrial Engineering, 139: 106184.
39.Rogers, D. S.,R. Tibben‐Lembke (2001). An examination of reverse logistics practices. Journal of business logistics, 22(2): 129-148.
40.Sanni, S., et al. (2020). An economic order quantity model with reverse logistics program. Operations Research Perspectives, 7: 100133.
41.Shulman, J. D., et al. (2009). Optimal restocking fees and information provision in an integrated demand-supply model of product returns. Manufacturing & Service Operations Management, 11(4): 577-594.
42.Stock, J. R. (1998). Development and implementation of reverse logistics programs. ANNUAL CONFERENCE PROCEEDINGS, COUNCIL OF LOGISTICS MANAGEMENT.--.
43.Su, X.,F. Zhang (2009). On the Value of Commitment and Availability Guarantees When Selling to Strategic Consumers. Management Science, 55(5): 713-726.
44.Voss, M. D., et al. (2006). Determining important carrier attributes: a fresh perspective using the theory of reasoned action. Transportation Journal: 7-19.
45.Wang, M.,H. Qu (2017). Review of the research on the impact of online shopping return policy on consumer behavior. Journal of Business Administration Research, 6(2): 15-21.
46.Xu, L., et al. (2015). Consumer returns policies with endogenous deadline and supply chain coordination. European Journal of Operational Research, 242(1): 88-99.
47.Yan, S., et al. (2020). Pricing and Return Strategy: Whether to Adopt a Cross-Channel Return Option? IEEE Transactions on Systems, Man, and Cybernetics: Systems.
48.Yang, S., et al. (2020). Augmented Lagrangian relaxation approach for logistics vehicle routing problem with mixed backhauls and time windows. Transportation Research Part E: Logistics and Transportation Review, 135: 101891.
49.Zhang, J., et al. (2019). The online integrated order picking and delivery considering Pickers’ learning effects for an O2O community supermarket. Transportation Research Part E: Logistics and Transportation Review, 123: 180-199.
50.Zhu, G., et al. (2019). Online purchase decisions for tourism e-commerce. Electronic Commerce Research and Applications, 38: 100887.
51.Zhu, W., et al. (2019). Exploring purchase intention in cross-border E-commerce: A three stage model. Journal of Retailing and Consumer Services, 51: 320-330.
52.Zsidisin, G. A.,L. M. Ellram (2003). An agency theory investigation of supply risk m anagement. Journal of supply chain management, 39(2): 15-27.
53.何波、孟衛東(2010),產品回收逆向物流網路設計問題的兩階段啟發式演算法,運籌與管理, 19(1): 73-79。
54.李健(2002),逆向供應鏈,IT 經理世界, 7: 22。
55.李菲(2009),基於電子商務的逆向物流策略研究,鐵道運輸與經濟, 31(8): 74-77。
56.杜潔,郭宸(2010),電子商務退貨策略優化研究,物流工程與管理, 32(6): 116-117。
57.周根貴,曹振宇(2012),遺傳演算法在逆向物流網路選址問題中的應用研究,中國管理科學(1): 42-47。
58.施若芸(2019),家用電器網路購物退貨行為之研究,。
59.郝皓(2002),逆向物流,IT 經理世界, 8。
60.張呈徽、阮俊英(2012),網路購物行為—以大學生為例,修平學報(25): 67-77。
61.陶蓓麗、程瑞南(2006),網路購物顧客價值對顧客關係品質的影響之實証研究,中山管理評論, 14(2): 517-549。
62.喻奉天 等(2010),不確定性與信任對線上消費者購買意願之影響,電子商務學報, 12(3): 431-455。
63.黃宇 等(2009),基於 EOQ 逆向模型的快遞企業配送策略分析,物流工程與管理, 31(12): 95-97。
64.楊曉豔、崔利榮(2006),定時與定量配送的最優策略,。
65.薛順利 等(2006),電子商務環境下定價與退貨策略整合優化研究,運籌與管理, 15(5): 133-137。
66.謝佳蓉(2009),廢棄物回收之逆物流網路設計與運送規劃-以廢電腦為例,淡江大學運輸管理學系碩士班學位論文: 1-113。
67.蘇柏全、蔡宇智(2015),網購退貨: 顧客服務構面, 產品構面, 安全構面, 退貨機率,Electronic Commerce Studies, 13(2): 141-166。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *