帳號:guest(3.17.77.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:王采屏
作者(英文):Tsai-Ping Wang
論文名稱:潤滑油中的正烷類在土壤內風化之研究
論文名稱(英文):Study of Weathering Effects to the n-alkane of Lubricant in Soils
指導教授:蘇銘千
指導教授(英文):Ming-Chien Su
口試委員:高年信
施文真
莊順興
江漢全
口試委員(英文):Nian-Shin Gau
Wen-Chen Shih
Shun-Hsing Chuang
Han-Chiuan Jiang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610654024
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:55
關鍵詞:潤滑油土壤正烷類化合物風化緩釋型肥料
關鍵詞(英文):LubricantSoilThe n-alkaneWeatheringSlow-release fertilizer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
潤滑油為原油所煉製之礦物油,需具抗熱等特點以達到良好的潤滑效果,在製造過程中會依產品需求進行摻配,因此成分較為複雜,在工程中是不可或缺且經常使用於生活中的一種石油產品;大致上以 n-C18 以上不溶於水的烷類所組成,且比重小於 1,若意外洩漏至土壤中,經由滲透擴散污染範圍,增加整治困難。在潤滑油等重質石油產品的相關整治技術中,因油品性質,無法在短時間經自然風化或使用現地整治技術有效移除,則多以生物降解的方式,藉由微生物的生長利用將其代謝分解成較小分子以利進一步移除,因此本試驗配置 0.5%、1.0%及 1.5%等三種不同 CG4 濃度污染之土壤本經由去離子水澆灌、施加肥真久控釋型複合肥料等人為操作進行 120 天的風化試驗,並分析正烷類化合物的分布變化,以探討土壤中潤滑油風化變化的初步研究;根據本研究結果顯示: (1)CG4主要碳數分布於 n-C18至 n-C35之間,其中 n-C26至 n-C28區間之化合物最具抗風化性未來可作為辨識此油品或評估風化程度之診斷比值建置依據(2)肥真久控釋型複合肥料能有效且持續提供肥分,而其功能添加物中富含 n-C21 至 n-C35 等較高碳數正烷類化合物,且其顆粒狀塑料外皮具有吸附 CG4 的現象(3)本研究污染物的變化機制為受溫度、濕度與日照等環境因子影響之風化降解。
Lubricating oil is a mineral oil refined from crude oil. It needs to have the characteristics of heat resistance to achieve good lubrication effect. It will be blended according to product requirements in the manufacturing process. Therefore, the composition is more complicated and is indispensable and often in engineering. It is used in a petroleum product in life; it is composed of alkane which is insoluble in water above n-C18 and has a specific gravity of less than 1. If it accidentally leaks into the soil, it will increase the difficulty of remediation through the scope of penetration and diffusion. In the related remediation technology of heavy petroleum products such as lubricating oil, due to the nature of the oil, it cannot be effectively removed in a short time by natural weathering or using relevant pumping techniques such as SVE, and it is mostly biodegradable by microbial Growth and utilization will decompose its metabolism into smaller molecules for further removal. Therefore, the soils with different CG4 concentrations, such as 0.5%, 1.0% and 1.5%, are watered by deionized water and applied with long-term controlled release. A 120-day weathering test was carried out by artificial manure for man-made operation, and the distribution of n-alkane compounds was analyzed to investigate the change of ubricating oil weathering in soil. According to the results of this study, (1) the main carbon number of CG4 is distributed in n -C18 to n-C35, in which the compounds in the n-C26 to n-C28 range are the most resistant to weathering. (2) The low-release ertilizer is rich in higher carbon such as n-C21 to n-C35. A number of n-alkane compounds, and the granular plastic sheath has a phenomenon of adsorbing CG4. (1) The main carbon number of CG4 is distributed between n-C18 and n-C35, and the compound with n-C26 to n-C28 interval is the most resistant to weathering. The uture can be used as a diagnostic ratio for identifying this oil r assessing the degree of weathering. According to (2) Fertilizer long-term controlled release compound fertilizer can effectively and continuously provide fertilizer, and its functional additive s rich in n-C21 to n-C35 and other higher carbon number n-alkane compounds, and its granular shape The plastic outer skin has the phenomenon of adsorbing CG4. (3) The change mechanism of the pollutants in this study is weathering degradation affected by environmental factors such as temperature, humidity and sunshine.
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3研究流程與內容 2
第二章 文獻回顧 3
2.1油品污染事件 3
2.2土壤油品污染整治技術 5
2.2.1現地整治技術 6
2.2.2離地整治技術 14
2.3正烷類 17
第三章 材料與方法 19
3.1試驗設計 19
3.1.1試驗準備 21
3.1.2試驗期間 25
3.1.3樣本採集與保存 28
3.2實驗分析方法 29
3.2.1萃取淨化實驗方法 29
3.2.2氣相層析質譜儀(GC/MS)分析方法 32
3.3品保品管(Quality Assurance and Quality Control, QA&QC) 35
第四章 結果與討論 37
4.1正烷類定性分析 37
4.2正烷類定量分析 42
第五章 結論與未來研究方向 49
5.1結論 49
5.2未來研究方向 50
參考資料 51
附件 55
1. Alimi, H., T. Ertel and B. Schug (2003). "Fingerprinting of hydrocarbon fuel contaminants: literature review." Environmental Forensics 4(1): 25-38.
2. Bart, J. C. J., Gucciardi, E., & Cavallaro, S. (2013). Lubricants: properties and characteristics. Biolubricants: science and technology, 24-73.
3. Brown, L. D., & Ulrich, A. C. (2014). Bioremediation of oil spills on land. Handbook of Oil Spill Science and Technology, 395-406.
4. Cai, B., J. Ma, G. Yan, X. Dai, M. Li and S. Guo (2016). "Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil." Biochemical engineering journal 112: 170-177.
5. Frutos, F. J. G., Escolano, O., García, S., Babín, M., & Fernández, M. D. (2010). Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. Journal of hazardous materials, 183(1-3), 806-813.
6. Francisca, F. M., & Montoro, M. A. (2012). Measuring the dielectric properties of soil–organic mixtures using coaxial impedance dielectric reflectometry. Journal of Applied Geophysics, 80, 101-109.
7. Fingas, M. (2011). Introduction to oil chemistry and properties. In Oil Spill Science and Technology (pp. 51-59). Gulf Professional Publishing.
8. Fingas, M. F. (2015). Handbook of oil spill science and technology, Wiley Online Library.
9. Gallego, J. R., C. Sierra, R. Villa, A. I. Peláez and J. Sánchez (2010). "Weathering processes only partially limit the potential for bioremediation of hydrocarbon-contaminated soils." Organic geochemistry 41(9): 896-900.\
10. Kao, N. H., Su, M. C., Fan, J. R., & Yen, C. C. (2015). Investigation of polycyclic aromatic hydrocarbons (PAHs) and cyclic terpenoid biomarkers in the sediments of fishing harbors in Taiwan. Marine pollution bulletin, 97(1-2), 319-332.
11. Kao, N. H., Su, M. C., Fan, J. R., & Chung, Y. Y. (2015). Identification and quantification of biomarkers and polycyclic aromatic hydrocarbons (PAHs) in an aged mixed contaminated site: from source to soil. Environmental Science and Pollution Research, 22(10), 7529-7546.
12. Kao, N. H., Su, M. C., Chang, C. C., & Yen, C. C. (2018). Revealing minor terpane biomarkers in lubricants and soils using the customized cleanup method. Journal of soils and sediments, 18(1), 136-147.
13. Kao, N. H., Su, M. C., Yen, C. C., & Huang, Y. J. (2019). A characterization of the soils and sediments in contaminated sites and rivers using petroleum biomarker compounds. Journal of soils and sediments, 19(1), 241-254.
14. Imam, A., S. K. Suman, D. Ghosh and P. K. Kanaujia (2019). "Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge." TrAC Trends in Analytical Chemistry.
15. Lv, H., Su, X., Wang, Y., Dai, Z., & Liu, M. (2018). Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. Chemosphere, 206, 293-301.
16. Li, X., B. J. Anderson, I. Vogeler and L. Schwendenmann (2018). "Long-chain n-alkane and n-fatty acid characteristics in plants and soil-potential to separate plant growth forms, primary and secondary grasslands?" Science of the Total Environment 645: 1567-1578.
17. Liu, M. H., Hsiao, C. M., Wang, Y. S., Chen, W. Y., & Hung, J. M. (2019). Tandem modified Fenton oxidation and bioremediation to degrade lubricant-contaminated soil. International Biodeterioration & Biodegradation, 143, 104738.
18. McCutcheon, S. C. and Jorgensen, S. E. (2008). Phytoremediation. Encyclopedia of Ecology, Elsevier:568-582.
19. Prendergast, D. P., and Gschwend, P. M. (2014). Assessing the performance and cost of oil spill remediation technologies. Journal of cleaner production, 78, 233-242.
20. Pei, G., Zhu, Y., Cai, X., Shi, W., & Li, H. (2017). Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil. Chemosphere, 185, 1112-1121.
21. Schmidt-Etkin, D. (2011). Spill occurrences: a world overview. Oil spill science and technology, Elsevier: 7-48.
22. Silva-Castro, G. A., Uad, I., Rodríguez-Calvo, A., González-López, J., & Calvo, C. (2015). Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environmental research, 137, 49-58.
23. Stout, S. A. and Z. Wang (2016). Chemical fingerprinting methods and factors affecting petroleum fingerprints in the environment. Standard Handbook Oil Spill Environmental Forensics, Elsevier: 61-129.
24. Varjani, S., & Upasani, V. N. (2019). Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. Journal of environmental management, 245, 358-366.
25. Wang, Z., C. Yang, F. Kelly-Hooper, B. Hollebone, X. Peng, C. Brown, M. Landriault, J. Sun and Z. Yang (2009). "Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments." Journal of Chromatography A 1216(7): 1174-1191.
26. Wang, Z., C. Yang, Z. Yang, C. E. Brown, B. P. Hollebone and S. A. Stout (2016). Petroleum biomarker fingerprinting for oil spill characterization and source identification. Standard Handbook Oil Spill Environmental Forensics, Elsevier: 131-254.
27. Yang, C., Z. Wang, B. P. Hollebone, C. E. Brown and M. Landriault (2009). "Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products." Journal of Chromatography A 1216(20): 4475-4484.
28. 吳素慧、高振山、吳姿燕,2009。海域油污染生物指標檢測技術建立。
29. 陳谷汎與高志明,2002。土壤及地下水物理/化學復育技術,台灣土壤及地下水環境保護協會簡訊,5,3-5。
30. 江汶錦,2014。現代化農業:施肥懶人包–緩效性肥料,科學發展,496,40-43。
31. 林高生,2014。建置多環芳香烴與其烷基衍生物在土壤污染物之化學指紋鑑定法,碩士論文,國立東華大學。
32. 范烝榕,2014。石油產品中低沸點生物指標之化學指紋鑑定,碩士論文,國立東華大學。
33. 嚴之君,2016。漁港與溪口底泥中油品污染物生物指標化合物之研究,碩士論文,國立東華大學。
34. 黃毓仁,2018。重燃料油中生物指標化合物之研究,碩士論文,國立東華大學。(Gallego, Sierra et al. 2010, Cai, Ma et al. 2016, Imam, Suman et al. 2019)
(此全文20240810後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *