帳號:guest(18.117.142.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉俊佑
作者(英文):Jyun-You Liou
論文名稱:植物葉面親疏水性轉變之微結構研究
論文名稱(英文):Microstructure study of Plant leaf surface hydrophobicity transformation
指導教授:楊悠娟
指導教授(英文):Yu-Chuan Yang
口試委員:楊悠娟
張世杰
吳明洲
紀凱容
口試委員(英文):Yu-Chuan Yang
Shih-Chieh Chang
Ming-Jou Wu
Kai-Jung Chi
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610654030
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:265
關鍵詞:疏水性親水性微結構接觸角電子顯微鏡
關鍵詞(英文):hydrophobicityhydrophilicitymicrostructurecontact angleelectron microscope
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏收藏:0
本研究探討聖誕紅、樟樹、烏臼葉片微結構的轉變與親疏水性的關係。滴水施測法發現:聖誕紅的苞片具有疏水性,而一般葉片呈現親水性;樟樹、烏臼為台灣常見樹種,部分嫩葉為疏水性,而成熟葉為親水性。
親疏水性的轉變與表面結構有關,不同葉片的表面結構會改變葉面與水的接觸角度。本研究以一串樹葉為單位,首先以滴水測試判定其親疏水性,其次以接觸角測量儀量測葉面與純水的接觸角度,最後以掃描式顯微鏡觀測樣本的表面結構,探討葉面微結構、接觸角、親疏水性與葉片成熟程度的關係。
研究結論:
一、滴水施測法的研究結果顯示,三種植物超疏水、疏水、親水性與葉面成熟程度呈正相關。嫩葉為超疏水性,隨著葉子生長過程,依序轉變為疏水性、親水性。
二、接觸角量測的研究結果顯示,三種植物的接觸角與葉片成熟度呈負相關。聖誕紅的接觸角約40-140度,樟樹的接觸角約50-140度,烏臼的接觸角約65-145度。因三種植物皆有異常值,以交集為代表值,超疏水性(135度以上)、超疏-疏水過渡階段(135-130度)、疏水性(115-130度)、疏水-親水過渡階段(95-115度)、親水性(小於95度)。本研究結果與Barthlott & Neinhuis (1997, Planta, 202(1), 1-8.)所定義之超疏水性接觸角150度以上,以及Kim,& Noh (2018, Micromachines, 9(5), 208.) 所定義之疏水性接觸角90-130度,略有不同。
三、掃描式顯微鏡之觀測結果顯示,葉表面結構可依觀測尺度為微米尺度或奈米尺度,分為初級微結構與次級微結構:
(一)葉面微結構第一層-葉面初級微結構:為三種植物的葉面皆具有的微米尺度的橢圓突起。由嫩葉至成熟葉,橢圓突起長短軸之長度逐漸增加、凸起大小逐漸增加、凸起密度逐漸下降。
(二)葉面微結構第二層-葉面次級微結構:為橢圓突起上的微米及奈米尺度的蠟質結晶體。依據 Barthlott & Neinhuis (1997, l.c.)之分類,本研究將聖誕紅之結晶體鑑定為玫瑰型小板結晶體;樟樹為盤繞棒狀結晶體;烏臼為平行聚合小板結晶體。聖誕紅的結晶體寬度與葉片成熟度呈正相關,但結晶體長度與葉片成熟度不相關。樟樹與烏臼的結晶體長度、寬度皆與葉片成熟度不相關。
This study explores the process of the hydrophobic and hydrophilic changes on the leaves. Cinnamomum camphora (L.) J.Presl, and Sapium sebiferum (L.) Roxb. were common tree species in Taiwan. According to our prior investigations, some young leaves were hydrophobic and mature leaves were hydrophilic. We predicted that the microstructures of the leaf surfaces are related to the conversion from hydrophobic and hydrophilic.
In this study, we chose a bunch of leaves as a unit from three species, Euphorbia pulcherrima Willd. ex Klotzsch, C. camphora, and S. sebiferum. We did the following tests and summaries the results below:
1. Drip method: The superhydrophobic, hydrophobic, and hydrophilic properties of the three plants positively correlate with the degree of leaf maturity. The young leaves were superhydrophobic, and as the leaves grew, they turned into hydrophobic and hydrophilic.
2. Contact angle measurement: The contact angles of the three plants are inversely related to leaf maturity. The contact angle of E. pulcherrima is about 40-140 degrees, C. camphora is about 50-140 degrees, and S. sebiferum is about 65-145 degrees. Because there are outliers, we chose the intersection of the contact angle values. The values are superhydrophobic (> 135 degrees), between superhydrophobic and hydrophobic (135-130 degrees), hydrophobic (115-130 degrees), between hydrophobic and hydrophilic (95-115 degrees), hydrophilic (< 95 degrees). We used the contact angle measuring instrument (FTA125 standard). Compared with the literature Our results are slightly different from the superhydrophobic value (>150 degrees) of Barthlott and Neinhuis (1997, Planta, 202(1), 1-8.) and the hydrophobic value (90-130 degrees) of Kim and Noh (2018, Micromachines, 9(5), 208.).
3. Scanning Electron Microscopy: Primary and secondary microstructures are classified for leaf surface magnified at micro- or nano- meter scale, respectively.
(1) The microstructures of leaves-first layer is the elliptical protrusions on leaf surfaces of all the three plants on the micrometer scale. From young leaves to mature leaves, the length of the long and short axes increased, the size of the protrusion increased, and the density of protrusion declined, .
(2). The microstructures of leaves-second layer is the wax crystals of micro-meter and nanometer scales on the elliptical protrusions. Based on the classification of Barthlott & Neinhuis (1997, l.c.), E. pulcherrima is identified as Rosettes, C. camphora as Coiled rodlets, and S. sebiferum as Parallel grouped platelets. The crystal widths of E. pulcherrima positively correlated with leaf maturity, but the crystal length did not. Both of the lengths and widths of C. camphora and S. sebiferum are not related to leaf maturity.
第一章 緒論 15
第一節 研究背景與動機 17
一、研究背景 17
二、研究動機 17
三、研究目的 19
四、研究問題 19
第二章 文獻探討 20
第一節 仿生學-蓮葉效應 20
第二節 植物表面研究 24
第三節 接觸角 26
一、 本質接觸角/楊氏接觸角(Intrinsic contact angle) 26
二、 濕潤模型-Wenzel Medel 29
三、濕潤模型-Cassie Medel 30
四、實際情況 31
第四節 電子顯微鏡SEM 33
第五節 植物蠟的組成與型態 35
第六節 校園植物蓮葉效應調查 37
第三章 研究方法 49
第一節 研究架構 50
第二節 研究對象 51
第三節 研究工具 54
一、接觸角測量儀 54
二、臨界點乾燥器 56
三、鍍金儀 57
四、掃描式電子顯微鏡 58
第四節 研究程序 60
一、研究程序圖 60
二、滴水測試法 61
三、採集樣品 62
四、量測接觸角 63
五、電子顯微鏡樣品製備-超臨界流體乾燥法 64
六、電子顯微鏡樣品製備-鍍金 65
七、拍攝電子顯微鏡相片 65
第四章 結果與討論 66
第一節 前導實驗1 67
第二節 前導實驗2 74
第三節 前導實驗3 79
第四節 前導實驗4 85
第五節 前導實驗5 89
第六節 聖誕紅正式實驗1 95
第七節 聖誕紅正式實驗2 112
第八節 聖誕紅正式實驗3 126
第九節 聖誕紅正式實驗1~3結論 140
第十節 樟樹正式實驗1 145
第十一節 樟樹正式實驗2 158
第十二節 樟樹正式實驗3 172
第十三節 樟樹正式實驗1~3結論 184
第十四節 烏臼正式實驗1 188
第十五節 烏臼正式實驗2 216
第十六節 烏臼正式實驗3 233
第十八節 烏臼正式實驗1~3結論 248
第五章 結論與建議 249
第一節 結論 249
第二節 建議 259
第三節 未來研究方向 261
第六章 參考文獻 262

一、中文部分

王奔, 念敬妍, 铁璐, 张亚斌, & 郭志光. (2013). 稳定超疏水性表面的理论进展. 物理学报, 62(14), 146801-146801.

任露泉、楊卓娟、韓志武(2005)。生物非光滑耐磨表面仿生應用研究展望。農業機械學報,36(7), 144-147。

林天送(2009)。魔鬼沾的發明。擷自:https://scitechvista.nat.gov.tw/c/sWIs.htm

張曌菲(譯) (1998)。人類的出路-探尋生物模擬的奧妙 (原作者:J.M.Benyus)。台北市:胡桃木。

楊悠娟(2019年10月)。科學探究闖關實作融入大學通識課程設計之行動研究。崑山科技大學人文暨社會科學學報,7,149-162。

楊悠娟*、詹賢媛、賴珮瑄、吳文婷、陳宣平、許涵雅、蘇琡雲 (2015)。洄瀾生態奈米地圖-教學導覽 (ISBN:978-986-04-0122-6)。花蓮縣:國立東華大學奈米科技研究中心。

張雨青(譯)(2013)。(原作者:Peter Forbes)壁虎腳底的高科技:仿生學向大自然取經,設計未來。台北市:遠流。(原著出版年:2006)

戴吾三. (2013). 发明史上的仿生设计. 装饰, 4, 12-15.

譚娜、邢志國、王海鬥、王曉麗、金國、徐濱士(2018)。基於仿生原理的幾何構型及其功能性的研究進展。材料工程,46(1),133-140.

二、英文部分
Asknature (n.d.). https:// https://asknature.org/

Baker, E. A. (1982). Chemistry and morphology of plant epicuticular waxes. The Plant Cuticle, 139-165.

Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1-8.

Bargel, H., Koch, K., Cerman, Z., & Neinhuis, C. (2006). Evans Review No. 3: Structure–function relationships of the plant cuticle and cuticular waxes—a smart material?. Functional Plant Biology, 33(10), 893-910.

Bhushan, B. (2009). Introduction: Biomimetics: Lessons from Nature-An Overview. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 1445-1486.

Barthlott, W., Mail, M., & Neinhuis, C. (2016). Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2073), 20160191.

Barthlott, W., Mail, M., Bhushan, B., & Koch, K. (2017). Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Letters, 9(2), 23.doi:10.1007/s40820-016-0125-1

Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theisen, I., & Wilhelmi, H. (1998). Classification and terminology of plant epicuticular waxes. Botanical journal of the Linnean society, 126(3), 237-260.

Bechert, D. W., Bruse, M., Hage, W., & Meyer, R. (2000). Fluid mechanics of biological surfaces
and their technological application. Naturwissenschaften, 87(4), 157-171.

Bhushan, B., Jung, Y. C., & Koch, K. (2009). Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans A Math Phys Eng Sci, 367(1894), 1631-1672. doi:10.1098/rsta.2009.0014


Chau, T. T., Bruckard, W. J., Koh, P. T., & Nguyen, A. V. (2009). A review of factors that affect contact angle and implications for flotation practice. Advances in colloid and interface science, 150(2), 106–115.

Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C., & Barthlott, W. (2011). Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein journal of nanotechnology, 2(1), 152-161.

Jeffree, C. E. (2006). The fine structure of the plant cuticle. Biology of the plant cuticle, 23, 11-125.

Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., & Pahl, A. K. (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface, 3(9), 471-482.

Jetter, R. & Schäffer, S. (2001). Chemical Composition of the Prunus laurocerasus Leaf Surface.
Dynamic Changes of the Epicuticular Wax Film during Leaf Development

Koch, K. & Barthlott, W.(2009). Superhydrophobic and superhydrophilic plant surfaces: an
inspiration for biomimetic materials

Neinhuis, C., & Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of botany, 79(6), 667-677.


Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., & Pahl, A. K. (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface, 3(9), 471-482.
doi:10.1098/rsif.2006.0127

Nano4Smart company (2014). Lotus effect product from:
https://nano4smart.wordpress.com/products/

Kim, M., & Noh, J. (2018). Fabrication of a hydrophilic line on a hydrophobic surface by laser ablation processing. Micromachines, 9(5), 208.

Lotus Nano Solutions company (2015). Lotus effect product from:
http://www.lotusnanosolutions.com/2015/07/

UNFCCC (1992) United Nations framework convention on climate change.

Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., & Pahl, A. K. (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface, 3(9), 471-482.

Wahl, D. C. (2006). Bionics vs. biomimicry: from control of nature to sustainable participation in nature. Design and nature III: comparing design in nature with science and engineering, 87, 289-298.

Yuan, Y., & Lee, T. R. (2013). Contact angle and wetting properties. In Surface science
techniques (pp. 3-34). Springer, Berlin, Heidelberg.

Yuan, Y., Yu, X., Yang, X., Xiao, Y., Xiang, B., & Wang, Y. (2017). Bionic building energy efficiency and bionic green architecture: A review. Renewable and Sustainable Energy Reviews, 74, 771-787.

Zhang, M., Feng, S., Wang, L., & Zheng, Y. (2016). Lotus effect in wetting and self-cleaning. Biotribology, 5, 31-43.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *