帳號:guest(18.119.117.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:孫瑜嬪
作者(英文):Yu-Pin Sun
論文名稱:海洋沉積物與珊瑚所含假弧菌屬菌與紅細菌科菌多樣性
論文名稱(英文):Study on the Diversities of Pseudovibrio and Rhodobacteraceae Associated with Marine Sediments and Corals
指導教授:郭傑民
指導教授(英文):Jimmy-Kuo
口試委員:張桂祥
林重宏
郭傑民
口試委員(英文):Kwee-Siong Tew
Chong-Hong Lin
Jimmy-Kuo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610663001
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:113
關鍵詞:海洋沉積物假弧菌屬多樣性專一性引子
關鍵詞(英文):marine sedimentsPseudovibrioDiversitySpecificity primer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
屬於紅細菌科(Rhodobacteraceae)且具去硝化(denitrification)能力的假弧菌屬(Pseudovibrio)細菌被認為廣泛分佈在各種海洋環境中,例如海水、海洋沉積物和海洋無脊椎動物。此屬菌重複地由海洋無脊椎生物中分離出,被發現許多能生產具有生物活性的二次代謝物。然而,其多樣性與抗菌活性仍大多未被研究。本研究中,吾人採集了台灣附近沿海及國立海洋生物博物館水族實驗中心戶外池的沉積物樣本,透過培養方法分離假弧菌屬細菌。吾人總共由海洋沉積物樣本中分離出1200株細菌,其中226株(18.83%)可能具有去硝化能力。根據16S rDNA基因序列,其中1株(分離自龜山島)與169株分離株分別被確定為假弧菌屬細菌與紅細菌科細菌,但是這170株細菌均未顯示抗微生物活性。使用假弧菌屬專一性引子對所有海洋沉積物樣本抽取的細菌DNA進行PCR擴增,吾人重複確認假弧菌屬細菌僅存在龜山島樣本中。16S rDNA基因之親緣關係分析顯示紅細菌科分離株包含Rugeria屬(142株)、Labrenzia屬(10)、Thalassobius屬(3)與Shimia屬(3)。
為了解與珊瑚伴生的假弧菌屬細菌多樣性,本研究還分析了國立海洋生物博物館水族實驗中心七個軟珊瑚樣本,使用不培養方法與假弧菌屬專一引子,發現四種珊瑚Sinularia sandensis、Briareum excavatum、Sarcophytum sp.與Sinularia brassica含有假弧菌屬細菌。使用基因選殖方法總共獲得74條假弧菌屬序列,親緣關係分析顯示其為Pseudovibrio denitrificans與Pseudovibrio ascidiaceicola。
研究結果顯示,假弧菌屬細菌在海洋沉積物中並不廣泛存在,這與以前的報告不同。但海洋無脊椎動物如珊瑚卻被發現含有此屬菌,它們或許能成為具生物活性二次代謝物的假弧菌屬菌株獨特來源。
Denitrifying bacteria of the genus Pseudovibrio, a member of the family Rhodobacteraceae, are considered to be widely distributed in various marine habitats such as seawater, marine sediments, and marine invertebrates. In addition, they are found to be repeatedly isolated from marine invertebrates and many can produce secondary metabolites with antimicrobial activity against a broad-spectrum of pathogens. However, their diversity and antimicrobial activity are largely unexplored. In the present study, nine marine sediment samples collected from the coastal area near Taiwan and the outdoor pool of National Museum of Marine Biology and Aquarium (NMMBA) were used to screen for Pseudovibrio strains by culture-based method. A total of 1200 bacterial strains were isolated from marine sediments, among which 226 (18.83%) strains displayed possibly denitrifying activity and within which one (isolated from Kueishan Island) and 169 isolates were confirmed to be Pseudovibrio and Rhodobacteraceae, respectively, based on 16S rRNA gene sequences. However, none of the 170 strains showed antimicrobial activity. Using PCR amplification of bacterial DNA extracted from all marine sediment samples with Pseudovibrio-specific primers, we reconfirmed that Pseudovibrio only existed in Kueishan Island. Phylogenetic analysis based on 16S rRNA genes suggested Rhodobacteraceae isolates belong to genera Rugeria (142 isolates), Labrenzia (10), Thalassobius (3), and Shimia (3).
To understand the diversity of Pseudovibrio associated with coral, we investigate the Pseudovibrio communities of seven soft coral samples collected from the husbandry center, NMMBA. Using culture-independent method and Pseudovibrio-specific primers, Pseudovibrio were detected in four coral species, namely Sinularia sandensis, Briareum excavatum, Sarcophytum sp., and Sinularia brassica. A total of 74 Pseudovibrio clones identified from coral cloning library were sequenced. Phylogenetic analysis showed they belong to Pseudovibrio denitrificans and Pseudovibrio ascidiaceicola.
Our results demonstrate that Pseudovibrio strains do not widely exist in marine sediments, different from previous reports. However, marine invertebrates such as corals are a unique source of diverse Pseudovibrio which may be use as a source of secondary metabolites with biological activities.
第一章 緒論 1
第一節 前言 1
第二節 海洋微生物與其二次代謝物 1
第三節 假弧菌屬簡介 2
第四節 假弧菌屬菌分離與其二次代謝物 3
第五節 紅細菌科Rhodobacteraceae與其分類簡介 5
第六節 細菌之16S rRNA基因鑑定(identification)與親緣關係(phylogenetic)分析 7
第七節 不培養(culture- independent)方法分析環境中微生物 8
第八節 研究動機與目的 9
第二章 實驗材料與方法 11
第一節 藥品、器材及培養基 11
第二節 樣本採集、菌株分離與培養 18
第三節 16S rDNA 序列鑑定 20
第四節 菌株抗菌活性測試實驗 23
第五節 不可培養方法分析海洋沉積物與珊瑚所含假弧菌屬菌 24
第六節 序列生物資訊與親緣關係分析 29
第三章 結果 31
第一節 樣本採集與鑑種 31
第二節 海洋沉積物樣本選擇性培養基培養與篩選 33
第三節 分離株16S rDNA序列鑑定 38
第四節 分離株抗菌活性測試 46
第五節 以不培養方法分析海洋沉積物樣本中所含假弧菌屬細菌 46
第六節 以不培養方法分析珊瑚樣本 49
第四章 討論 57
第一節 不同環境、類型的樣本與假弧菌屬細菌 57
第二節 以相同培養基比較沉積物與海綿菌數 57
第三節 具去硝化能力的細菌 59
第四節 假弧菌屬細菌在海洋沉積物中的分布 59
第五節 紅細菌科細菌在海洋沉積物中的分布 60
第六節 抗微生物活性結果 60
第七節 珊瑚與假弧菌屬細菌 61
第八節 16S rDNA親緣關係分析 62
第五章 結論與建議 65
參考文獻 67
附錄 77
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403-410.

Amiri Moghaddam J., Davila-Cespedes A., Kehraus S., Crusemann M., Kose M., Muller C. E., Konig G. M. (2018) Cyclopropane-containing fatty acids from the marine bacterium Labrenzia sp. 011 with antimicrobial and GPR84 activity. Marine Drugs 16, 369.

Bondarev V., Richter M., Romano S., Piel J., Schwedt A., Schulz-Vogt H. N. (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environmental Microbiology 15, 2095-2113.

Botstein D., White R. L., Skolnick M., Davis R. W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32, 314-331.

Cole J. R., Chai B., Farris R. J., Wang Q., Kulam S. A., McGarrell D. M., Garrity G. M., Tiedje J. M. (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research 33, 294-296.

Chen Y. H., Kuo J., Sung P. J., Chang Y. C., Lu M. C., Wong T. Y., Liu J. K., Weng C. F., Twan W. H., Kuo F. W. (2012) Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals. World Journal of Microbiology and Biotechnology 28, 3269-3279.

Edenborn S. L., Sexstone A. J. (2007) DGGE fingerprinting of culturable soil bacterial communities complements culture-independent analyses. Soil Biology and Biochemistry 39, 1570-1579

Efron B. (1979) Bootstrap methods: another look at the jackknife. The Annals of Statistics 7, 1-26.

Euzeby J. (2006) List of new names and new combinations previously effectively, but not validly, published. International Journal of Systematic and Evolutionary Microbiology 56, 1-6.

Fang H., Cai L., Yang Y., Ju F., Li X., Yu Y., Zhang T. (2014) Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Science of The Total Environment 470-471, 983-992.

Fukunaga Y., Kurahashi M., Tanaka K., Yanagi K., Yokota A., Harayama S., Affiliations V. (2006) Pseudovibrio ascidiaceicola sp. nov., isolated from ascidians (sea squirts). International Journal of Systematic and Evolutionary Microbiology 56, 343-347.

Garrity G. M., Bell J. A., Lilburn T. (2005) Family I. Rhodobacteraceae fam. nov. In: Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 161–228.

Giebel H. A., Brinkhoff T., Zwisler W., Selje N., Simon M. (2009) Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial communities from the subtropics to the Southern Ocean. Environmental Microbiology 11, 2164-2178.

Gomes J., Khandeparker R., Bandekar M., MeenaR. M., Ramaiah N. (2018) Quantitative analyses of denitrifying bacterial diversity from a seasonally hypoxic monsoon governed tropical coastal region. Deep Sea Research Part II: Topical Studies in Oceanography 156, 34-43.

Hall T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Sreies 41, 95-98.

Handelsman J. (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews 68, 669-685.

Hosoya S., Yokota A. (2007) Pseudovibrio japonicus sp. nov., isolated from coastal seawater in Japan. International Journal of Systematic and Evolutionary Microbiology 57, 1952-1955.

Kachiprath B., Puthumana J., Gopi J., Solomon S., Krishnan K. P., Philip R. (2018) Amplicon sequencing based profiling of bacterial diversity from Krossfjorden, Arctic. Data in Brief 21, 2522-2525.

Kanukollu S., Voget S., Pohlner M., Vandieken V., Petersen J., Kyrpides N. C., Woyke T., Shapiro N., Goker M., Klenk H. P., Cypionka H., Engelen B. (2016) Genome sequence of Shimia str. SK013, a representative of the Roseobacter group isolated from marine sediment. Standards in Genomic Sciences 11, doi: 10.1186/s40 793-016-0143-0. eCollection 2016.

Kim J., Kim D. Y., Yang K. H., Kim S., Lee S. S. (2019) Ruegeria lutea sp. nov., isolated from marine sediment, Masan Bay, South Korea. International Journal of Systematic and Evolutionary Microbiology 69, 2854-2861.

Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120.

Kraft B., Tegetmeyer H. E., Meier D., Geelhoed J. S., Strous M. (2014) Rapid succession of uncultured marine bacterial and archaeal populations in a denitrifying continuous culture. Environmental Microbiology 16, 3275-3286.

Kwon H.C., Kauffman C. A., Jensen P. R., Fenical W. (2009) Marinisporolides, polyene-polyol macrolides from a marine actinomycete of the new genus Marinispora. The Journal of Organic Chemistry 74, 675-684.

Li J. W., Vederas J.C. (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161-165.

Malmstrom R. R., Straza T. R. A., Cottrell M. T., Kirchman D. L. (2007) Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Inter-Research Science Publisher 47, 45-55.

Newman D. K., Banfield J. F. (2002) Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science 296, 1071-1077.

O’Halloran J. A., Barbosa T. M., Morrissey J. P., Kennedy J. (2011) Diversity and antimicrobial activity of Pseudovibrio spp. from Irish marine sponges. Journal of Applied Microbiology 110, 1495-1508.

O’Halloran J. A., Barbosa T. M., Morrissey J. P., Kennedy J., Dobson A. D. W., O’Gara F. (2013) Pseudovibrio axinellae sp. nov., isolated from an Irish marine sponge. International Journal of Systematic and Evolutionary Microbiology 63, 141-145.

Penesyan A., Tebben J., Lee M., Thomas T., Kjelleberg S., Harder T., Egan S. (2011) Identification of the antibacterial compound produced by the marine epiphytic bacterium Pseudovibrio sp. D323 and related sponge-associated bacteria. Marine Drugs 9, 1391-1402.

Pujalte M. J., Lucena T., Ruvira M. A., Arahal D. R., Macián M. C. (2014) The family Rhodobacteraceae. In: Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg, pp. 439-512.

Rappé M. S., Giovannoni S. J. (2003) The uncultured microbial majority. Annual Review of Microbiology 57, 369-394.

Riesenfeld C. S., Murray A. E., Baker B. J. (2008) Characterization of the microbial community and polyketide biosynthetic potential in the palmerolide-producing tunicate Synoicum adareanum. Journal of Natural Products 71, 1812-1818.

Romano S. (2018) Ecology and biotechnological potential of bacteria belonging to the genus Pseudovibrio. Applied and Environmental Microbiology 84, e02516-e02517.

Rosenfeld W. D., Zobell C. E. (1947) Antibiotic production by marine microorganisms. Journal of Bacteriology 54, 393-398.

Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425.

Santos-Gandelman J. F., Santos O. C. S., Pontes P. V. M., Andrade C. L., Korenblum E., Muricy G., Giambiagi-deMarval M., Laport M. S. (2013) Characterization of cultivable bacteria from Brazilian sponges. Marine Biotechnology 15, 668-676.

Schleissner C., Cañedo L. M., Rodríguez P., Crespo C., Zúñiga P., Peñalver A., de la Calle F., Cuevas C. (2017) Bacterial production of a pederin analogue by a free-living marine Alphaproteobacterium. Journal of Natural Products 80, 2070-2073.

Sertan-de Guzman A. A., Predicala R. Z., Bernardo E. B., Neilan B. A., Elardo S. P., Mangalindan G. C., Tasdemir D., Ireland C. M., Barraquio W. L., Concepcion G. P. (2007) Pseudovibrio denitrificans strain Z143-1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate. FEMS Microbiology Letters 277, 188-196.

Sheridan C., Baele J. M., Kushmaro A., Frejaville Y., Eeckhaut I. (2014) Terrestrial runoff influences white syndrome prevalence in SW Madagascar. Marine Environmental Research 101, 44-51.

Shieh W. Y., Lin Y. T., Jean W. D. (2004) Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. International Journal of Systematic and Evolutionary Microbiology 54, 2307-2312.

Sponga F., Cavaletti L., Lazzarini A., Borghi A., Ciciliato I., Losi D., Marinelli F. (1999) Biodiversity and potentials of marine-derived microorganisms. Progress in Industrial Microbiology 35, 65-69.

Sudek S., Lopanik N. B., Waggoner L. E., Hildebrand M., Anderson C., Liu H., Patel A., Sherman D. H., Haygood M. G. (2007) Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. Journal of Natural Products 70, 67-74.

Kubota T., Kobayashi T., Nunoura T., Maruyama F., Deguchi S. (2016) Enantioselective utilization of D-amino acids by deep-sea microorganisms. Frontiers in Microbiology 7, 511.

Tamura K., Dudley J., Nei M., Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596-1599.

Thompson J. D., Higgins D. G. Gibson T. J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680.

Versluis D., McPherson K., Passel M. W. J., Smidt H., Sipkema D. (2017) Recovery of previously uncultured bacterial genera from three mediterranean sponges. Marine Biotechnology 19, 454-468.

Wagner-Dobler I., Biebl H. (2006) Environmental biology of the marine Roseobacter lineage. Annual Review of Microbiology 60, 255-280.

Wang Q., Garrity G. M., Tiedje J. M., and Cole J. R. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environment Microbiology 73, 5261-5267.

Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. (1991) 16S ribosomal DNA amplification for phylogenetic study. Journal of the American Society for Microbiology 173, 697-703.

Woese C. R. (1987) Bacterial evolution. Microbiol Reviews 51, 221-271.

Wyman M., Hodgson S., Bird C. (2013) Denitrifying alphaproteobacteria from the Arabian Sea that express nosZ, the gene encoding nitrous oxide reductase, in oxic and suboxic waters. Applied and Environmental Microbiology 79, 2670-2681.

Xu H. S., Roberts N., Singleton F. L., Attwell R. W., Grimes D. J. Colwell R. R. (1982) Survival and viability of nonculturable Escherichia coli and Vibrio Cholerae in the estuarine and marine environment. Microbial Ecology 8, 313-323.

Xu Y., Li Q., Tain R., Lai Q., Zhang Y. (2015) Pseudovibrio hongkongensis sp. nov., isolated from a marine flatworm. Antonie van Leeuwenhoek 108, 127-132.

Yarza P., Ludwig W., Euzeby J., Amann R., Schleifer K. H., Glockner F. O., Rossello-Mora R. (2010) Update of the All-Species Living Tree Project based on 16S and 23S-28S rRNA sequence analyses. Systematic and Applied Microbiology 33, 291–299.

Zhang Y., Li Q., Tian R., Lai Q., Xu Y. (2016) Pseudovibrio stylochi sp. nov., isolated from a marine flatworm. International Journal of Systematic and Evolutionary Microbiology 66, 2025-2029.

李佩真(2018)分離自海綿中可培養的假弧菌屬細菌多樣性與其抗微生物活性。國立東華大學碩士論文。

呂寧(2012)台灣南部與東部海域沉積物中篩選具抗微生物活性之真菌與放線菌。國立東華大學碩士論文。

胡翔竣(2015)從海洋沉積物中篩選出具生物活性之放線菌。國立東華大學碩士論文。

黃琮瑜(2011)台灣東部及南部海域海底沉積泥中具生物活性之海洋細菌篩選。國立東華大學碩士論文。

陳冠廷(2018)從海洋沉積物中篩選產具生物活性二次代謝物之海洋放線菌。國立東華大學碩士論文。
(此全文20250107後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *