帳號:guest(52.15.245.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:葉宗旻
作者(英文):Zong-Min Ye
論文名稱:以藍光和異營餵食強化兩種軸孔珊瑚的生長與色彩
論文名稱(英文):Enhancing the growth and color of two Acropora coral species by blue light and heterotrophic feeding
指導教授:樊同雲
指導教授(英文):Tung-Yung Fan
口試委員:劉弼仁
劉莉蓮
樊同雲
口試委員(英文):Pi-Jen Liu
Li-Lien Liu
Tung-Yung Fan
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610663011
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:67
關鍵詞:光譜異營餵食生長色彩3D測量軸孔珊瑚
關鍵詞(英文):spectrumheterotrophic feedinggrowthcolor3D scanningAcropora coral
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
藍光具有促進珊瑚鈣化作用與增加色素的能力,但會抑制其共生藻光合作用所提供的自營功能,而異營餵食則可補償珊瑚所需的營養。本研究將多孔軸孔珊瑚 (Acropora millepora)與柔枝軸孔珊瑚 (Acropora tenuis),提供藍光 (450 nm)和白光 (7000K)的不同處理,並在完全人工環境、合成海水、光合作用光量子密度為200 μmol photons m-2 s-1、以及每周異營餵食滋養豐年蝦情況下,養殖12周,以評估光譜對其生長、色彩和生理的效應。結果顯示兩種珊瑚的存活率皆為100%,最大光量子產量也正常。浮力重量與3D掃描建模測量的結果顯示,兩種珊瑚的重量、體積、基部圓周與高的增長百分比在藍光組皆顯著大於白光組。兩種珊瑚側面共肉組織色彩的紅值、綠值、藍值和亮度的增加百分比在藍光組皆顯著大於白光組,但飽和度則是下降百分比在藍光組顯著大於白光組。因此,在異營餵食下,藍光能夠有效地提升養殖軸孔珊瑚的生長率與色彩亮度,進而強化人工培育產業用珊瑚的成效。
Cultivating coral under blue light is known to enhance coral calcification and increase pigmentation, but also inhibits the photosynthetic efficiency of Symbiodinium. To address this tradeoff, heterotrophic feeding has been proposed as a way to provide sufficient nutrients to corals grown under blue light. Corals, Acropora millepora and Acropora tenuis were cultured with a blue light (450 nm) and white light treatment (7000K) in an ex-situ environment for 12 weeks to assess the effects of light on coral physiology and color. The tank system was supplied with artificial seawater, had a photosynthetic photon flux density of 200 μmol photons m-2 s-1, and heterotrophic feeding with enriched Artemia salina was provided twice a week. Across treatments both coral species had a survival rate of 100% and their maximal photochemical yield was normal. The results of buoyant weight and 3D scanning modeling measurements showed that the increase percentage of weight, volume, base circumference, and height were significantly higher in the blue light treatment. The red, green, blue values and brightness score of the nubbin side tissue were significantly greater in the blue light treatment, but the saturation percentage was significantly lower in the blue light treatment. Therefore, under heterotrophic feeding conditions, blue light can effectively increase the growth rate and color of cultured aquarium corals, thereby enhancing the capacity for artificially culturing industrial corals.
壹、 前言 1
1. 珊瑚的重要性 1
2. 珊瑚水產養殖 1
3. 光環境對珊瑚影響 3
4. 珊瑚的自營與異營 4
5. 珊瑚的非破壞性量測 5
6. 軸孔珊瑚 7
7. 研究目的 8

貳、 材料方法 9
1. 珊瑚材料 9
1.1 母株採集 9
1.2 珊瑚分枝 9
2. 人工養殖系統與維護 10
2.1 養殖系統 10
2.2 系統維護 10
3. 光與光譜測量 11
4. 生長率測量 11
4.1 重量測量 11
4.2 表面積與體積測量 12
5. 色彩測量 13
6. 異營餵食 14
7. 最大光量子產量測量 15
8. 統計分析 15

參、 結果 16
1. 養殖環境參數 16
2. 存活與生長 16
2.1 重量 16
2.2 體積與表面積 17
2.3 表面積與體積比 (S/V值)與骨骼密度 18
2.4 基部圓周與線性生長百分比 18
3. 最大光量子產量 19
4. 色彩 19
4.1 RGB系統 19
4.2 HSB系統 22

肆、 討論 24
1. 珊瑚養殖系統與環境的影響 24
2. 光譜對軸孔珊瑚的影響 25
2.1 珊瑚生長 25
2.2 珊瑚色彩 26
3. 異營餵食 27
4. 3D測量應用討論與評估 28
5. 結論 30
6. 未來值得研究的問題 30

伍、 參考文獻 31


方力行 (1989)。珊瑚學。黎明文化事業股份有限公司。臺灣。
陳俊男 (2013)。餵食處理對美麗軸孔珊瑚生理與色澤之影響。中山大學海洋科學系碩士論文。臺灣。
戴昌鳳、洪聖雯 (2009)。台灣珊瑚圖鑑。貓頭鷹出版社。臺灣。
戴昌鳳、秦啟翔 (2013)。東沙珊瑚生態圖鑑。海洋國家公園管理處。臺灣。
Aihara, Y., Maruyama, S., Baird, A. H., Iguchi, A., TakahashI, S., & Minagawa, J. (2019). Green fluorescence from cnidarian hosts attracts symbiotic algae. Proceedings of the National Academy of Sciences of the United States of America, 116, 2118-2123.
Allemand, D., Tambutté, É., Zoccola, D., & Tambutté, S. (2011). Coral Calcification, Cells to Reefs. Coral Reefs, 119-150. doi: 10.1007/978-94-007-0114-4_9
Bartlett, T. C. (2013). Small scale experimental systems for coral research considerations planning recommendations. NOAA.
Barton, J. A., Willis, B. L., & Hutson, K. S. (2017). Coral propagation: a review of techniques for ornamental trade and reef restoration. Reviews in Aquaculture, 9(3), 238-256. doi: 10.1111/raq.12135
Bengtson, D. A., Phillpe, L., & Sorgeloos, P. (1991). Use of Artemia as a food source for aquaculture Artemia Biology, 255-285.
Bollati, E., Plimmer, D., D'Angelo, C., & Wiedenmann, J. (2017). FRET-mediated long-range wavelength transformation by photoconvertible fluorescent proteins as an efficient mechanism to generate orange-red light in symbiotic deep water corals. Int J Mol Sci, 18(7). doi: 10.3390/ijms18071174
Bucher, D. J., Harriott, V. J., & Roberts, L. G. (1998). Skeletal micro-density, porosity and bulk density of Acroporid corals. Journal of Experimental Marine Biology and Ecology, 228, 117-136.
Chakravarti, L. J., Beltran, V. H., & van Oppen, M. J. H. (2017). Rapid thermal adaptation in photosymbionts of reef-building corals. Glob Chang Biol, 23(11), 4675-4688. doi: 10.1111/gcb.13702
Cohen, I., Dubinsky, Z., & Erez, J. (2016). Light enhanced calcification in hermatypic corals: new insights from light spectral responses. Frontiers in Marine Science, 2. doi: 10.3389/fmars.2015.00122
Conlan, J. A., Humphrey, C. A., Severati, A., & Francis, D. S. (2017). Influence of different feeding regimes on the survival, growth, and biochemical composition of Acropora coral recruits. PLoS One, 12(11), e0188568. doi: 10.1371/journal.pone.0188568
Craggs, J., Guest, J. R., Davis, M., Simmons, J., Dashti, E., & Sweet, M. (2017). Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol. Ecology and Evolution, 7(24), 11066-11078. doi: 10.1002/ece3.3538
D’Angelo, C., Denzel, A., Vogt, A., Matz, M. V., Oswald, F., Salih, A., Wiedenmann, J. (2008). Blue light regulation of host pigment in reef-building corals. Marine Ecology Progress Series, 364, 97-106. doi: 10.3354/meps07588
D’Angelo, C., Smith, E. G., Oswald, F., Burt, J., Tchernov, D., & Wiedenmann, J. (2012). Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs, 31(4), 1045-1056. doi: 10.1007/s00338-012-0926-8
Davies, P. S. (1989). Short term growth measurements of corals. Marine Biology, 101, 389-395.
Doszpot, N., McWilliam, M., Pratchett, M., Hoey, A., & Figueira, W. (2019). Plasticity in three-dimensional geometry of branching corals along a cross-shelf gradient. Diversity, 11(3), 44. doi: 10.3390/d11030044
Dullo, W.-C. (2005). Coral growth and reef growth: a brief review. Facies, 51(1-4), 33-48. doi: 10.1007/s10347-005-0060-y
Enochs, I. C., Manzello, D. P., Carlton, R., Schopmeyer, S., van Hooidonk, R., & Lirman, D. (2014). Effects of light and elevated pCO2 on the growth and photochemical efficiency of Acropora cervicornis. Coral Reefs, doi: 10.1007/s00338-014-1132-7
Enrı´quez, S., Me´ndez, E. R., Hoegh-Guldberg, O., & Iglesias-Prieto, R. (2017). Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proceeding of the Royal Society, 284(1853). doi: 10.1098/rspb.2016.166710.6084/m9
Fan, L.-s., Chen, Y.-w. J., & Chen, C.-s. (1989). Why does the white tip of stony coral grow so fast without zooxanthellae? Marine Biology, 103, 359-363.
Farag, M. A., Al-Mahdy, D. A., Meyer, A., Westphal, H., & Wessjohann, L. A. (2017). Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content. Scientific Reports, 7(1), 648. doi: 10.1038/s41598-017-00527-8
Ferrier-Pags, C., Witting, J., Tambutt, E., & Sebens, K. P. (2003). Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs, 22(3), 229-240. doi: 10.1007/s00338-003-0312-7
Ferrari, R., Figueira, W. F., Pratchett, M. S., Boube, T., Adam, A., Kobelkowsky-Vidrio, T., Byrne, M. (2017). 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 7(1), 16737. doi: 10.1038/s41598-017-16408-z
Gittins, J. R., D'Angelo, C., Oswald, F., Edwards, R. J., & Wiedenmann, J. (2015). Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Molecular Ecology, 24(2), 453-465. doi: 10.1111/mec.13041
Green, D. W., Ben-Nissan, B., Yoon, K. S., Milthorpe, B., & Jung, H. S. (2017). Natural and synthetic coral biomineralization for human bone revitalization. Trends Biotechnol, 35(1), 43-54. doi: 10.1016/j.tibtech.2016.10.003
Hirayama, K., Takayama, K., Haruta, S., Ishibashi, H., & Takeuchi, I. (2017). Effect of low concentrations of Irgarol 1051 on RGB (R, red; G, green; B, blue) colour values of the hard-coral Acropora tenuis. Marine Pollution Bulletin, 124(2), 678-686. doi: 10.1016/j.marpolbul.2017.05.027
Hoogenboom, M., Rottier, C., Sikorski, S., & Ferrier-Pages, C. (2015). Among-species variation in the energy budgets of reef-building corals: scaling from coral polyps to communities. Journal of Experimental Biology, 218(Pt 24), 3866-3877. doi: 10.1242/jeb.124396
Houlbreque, F., & Ferrier-Pages, C. (2009). Heterotrophy in tropical scleractinian corals. Biological Review, 84(1), 1-17. doi: 10.1111/j.1469-185X.2008.00058.x
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., Torda, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492-496. doi: 10.1038/s41586-018-0041-2
Hunter, C. E., Lauer, M., Levine, A., Holbrook, S., & Rassweiler, A. (2018). Maneuvering towards adaptive co-management in a coral reef fishery. Marine Policy, 98, 77-84. doi: 10.1016/j.marpol.2018.09.016
Jaubert, J. M. (2008). Scientific considerations on a technique of ecological purification that made possible the cultivation of reef-building corals in Monaco Advances in coral husbandry in public aquariums, 2, 115-126.
Knowlton, N., Brainard, R. E., Fisher, R., Moews, M., Plaisance, L., & Caley, M. J. (2010). Coral reef biodiversity. In Life in the World’s Oceans. Life in the World’s Oceans: Diversity, Distribution, and Abundance, 65-74.
Kuanui, P., Chavanich, S., Viyakarn, V., Park, H. S., & Omori, M. (2016). Feeding behaviors of three tropical scleractinian corals in captivity. Tropical Zoology, 29(1), 1-9. doi: 10.1080/03946975.2015.1119006
Leal, M. C., Calado, R., Sheridan, C., Alimonti, A., & Osinga, R. (2013). Coral aquaculture to support drug discovery. Trends Biotechnol, 31(10), 555-561. doi: 10.1016/j.tibtech.2013.06.004
Leal, M. C., Ferrier-Pagès, C., Petersen, D., & Osinga, R. (2016). Coral aquaculture: applying scientific knowledge toex situproduction. Reviews in Aquaculture, 8(2), 136-153. doi: 10.1111/raq.12087
Leal, M. C., Ferrier-Pages, C., Calado, R., Thompson, M. E., Frischer, M. E., & Nejstgaard, J. C. (2014). Coral feeding on microalgae assessed with molecular trophic markers. Molecular Ecology, 23(15), 3870-3876. doi: 10.1111/mec.12486
Lim, C.-S., Bachok, Z., & Hii, Y.-S. (2017). Effects of supplementary polyunsaturated fatty acids on the health of the scleractinian coral Galaxea fascicularis (Linnaeus, 1767). Journal of Experimental Marine Biology and Ecology, 491, 1-8. doi: 10.1016/j.jembe.2017.02.009
Loh, T. L., McMurray, S. E., Henkel, T. P., Vicente, J., & Pawlik, J. R. (2015). Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ, 3, e901. doi: 10.7717/peerj.901
Lohr, K. E., & Patterson, J. T. (2017). Intraspecific variation in phenotype among nursery-reared staghorn coral Acropora cervicornis (Lamarck, 1816). Journal of Experimental Marine Biology and Ecology, 486, 87-92. doi: 10.1016/j.jembe.2016.10.005
Lough, J. M., & Barnes, D. J. (2000). Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology, 245, 225-243.
Magel, J. M. T., Burns, J. H. R., Gates, R. D., & Baum, J. K. (2019). Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance. Scientific Reports, 9(1), 2512. doi: 10.1038/s41598-018-37713-1
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence–a practical guide. Journal of Experimental Batony, 51, 659-668.
Montano, S., Fattorini, S., Parravicini, V., Berumen, M. L., Galli, P., Maggioni, D., Strona, G. (2017). Corals hosting symbiotic hydrozoans are less susceptible to predation and disease. Proceeding of the Royal Society, 284(1869). doi: 10.1098/rspb.2017.240510.6084/m9
Nishiguchi, S., Wada, N., Yamashiro, H., Ishibashi, H., & Takeuchi, I. (2018). Continuous recordings of the coral bleaching process on Sesoko Island, Okinawa, Japan, over about 50days using an underwater camera equipped with a lens wiper. Marine Pollution Bulletin, 131(Pt A), 422-427. doi: 10.1016/j.marpolbul.2018.04.020
Osinga, R., Schutter, M., Griffioen, B., Wijffels, R. H., Verreth, J. A., Shafir, S., Lavorano, S. (2011). The biology and economics of coral growth. Marine Biotechnology (NY), 13(4), 658-671. doi: 10.1007/s10126-011-9382-7
Petersen, D., Wietheger, A., & Laterveer, M. (2008). Influence of different food sources on the initial development of sexual recruits of reefbuilding corals in aquaculture. Aquaculture, 277(3-4), 174-178. doi: 10.1016/j.aquaculture.2008.02.034
Porter, J. W. (1976). Autotrophy, heteratrophy, and resource partitioning in Caribbean reef-building corals. The American Naturalist, 110, 731-742.
Quick, C., D'Angelo, C., & Wiedenmann, J. (2018). Trade-Offs associated with photoprotective green fluorescent protein expression as potential drivers of balancing selection for color polymorphism in reef corals. Frontiers in Marine Science, 5. doi: 10.3389/fmars.2018.00011
Reichert, J., Backes, A. R., Schubert, P., Wilke, T., & Mahon, A. (2017). The power of 3D fractal dimensions for comparative shape and structural complexity analyses of irregularly shaped organisms. Methods in Ecology and Evolution, 8(12), 1650-1658. doi: 10.1111/2041-210x.12829
Reichert, J., Schellenberg, J., Schubert, P., & Wilke, T. (2016). 3D scanning as a highly precise, reproducible, and minimally invasive method for surface area and volume measurements of scleractinian corals. Limnology and Oceanography: Methods, 14(8), 518-526. doi: 10.1002/lom3.10109
Rhyne, A. L., Tlusty, M. F., Szczebak, J. T., & Holmberg, R. J. (2017). Expanding our understanding of the trade in marine aquarium animals. PeerJ, 5, e2949. doi: 10.7717/peerj.2949
Rizzo, M. A., Davidson, M. W., & Piston, D. W. (2009). Fluorescent protein tracking and detection: fluorescent protein structure and color variants. Cold Spring Harb Protoc, 2009(12), pdb top63. doi: 10.1101/pdb.top63
Rocha, R. J. M., Bontas, B., Cartaxana, P., Leal, M. C., Ferreira, J. M., Rosa, R., Calado, R. (2015). Development of a standardized modular system for experimental coral culture. Journal of the World Aquaculture Society, 46(3), 235-251. doi: 10.1111/jwas.12186
Rocha, R. J. M., Pimentel, T., Serôdio, J., Rosa, R., & Calado, R. (2013). Comparative performance of light emitting plasma (LEP) and light emitting diode (LED) in ex situ aquaculture of scleractinian corals. Aquaculture, 402-403, 38-45. doi: 10.1016/j.aquaculture.2013.03.028
Rocker, M. M., Francis, D. S., Fabricius, K. E., Willis, B. L., & Bay, L. K. (2017). Variation in the health and biochemical condition of the coral Acropora tenuis along two water quality gradients on the Great Barrier Reef, Australia. Marine Pollution Bulletin, 119(2), 106-119. doi: 10.1016/j.marpolbul.2017.03.066
Rosset, S., Wiedenmann, J., Reed, A. J., & D'Angelo, C. (2017). Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Marine Pollution Bulletin, 118(1-2), 180-187. doi: 10.1016/j.marpolbul.2017.02.044
Roth, M. S. (2014). The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol, 5, 422. doi: 10.3389/fmicb.2014.00422
Roth, M. S., Fan, T. Y., & Deheyn, D. D. (2013). Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PLoS One, 8(3), e59476. doi: 10.1371/journal.pone.0059476
Scherle, W. 1970. A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26: 57–60.
Schubert, P., & Wilke, T. (2018). Coral microcosms: challenges and opportunities for global change biology. doi: 10.5772/intechopen.68770
Sheridan, C., Kramarsky-Winter, E., Sweet, M., Kushmaro, A., & Leal, M. C. (2013). Diseases in coral aquaculture: causes, implications and preventions. Aquaculture, 396-399, 124-135. doi: 10.1016/j.aquaculture.2013.02.037
Siebeck, U. E., Marshall, N. J., Klüter, A., & Hoegh-Guldberg, O. (2006). Monitoring coral bleaching using a colour reference card. Coral Reefs, 25(3), 453-460. doi: 10.1007/s00338-006-0123-8
Stimson, J., & Kinzie, R. A. (1991). The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. Marine Biology, 153, 63-74.
Swanson, R., & Hoegh-Guldberg, O. (1998). Amino acid synthesis in the symbiotic sea. Marine Biology, 131, 83-93.
Szmant, A. M. (2002). Nutrient enrichment on coral reefs Is it a major cause of coral reef decline? Estuarine Research Federation, 25, 743-766.
Tagliafico, A., Rangel, S., Kelaher, B., & Christidis, L. (2018). Optimizing heterotrophic feeding rates of three commercially important scleractinian corals. Aquaculture, 483, 96-101. doi: 10.1016/j.aquaculture.2017.10.013
Tagliafico, A., Rangel, S., Kelaher, B., Scheffers, S., & Christidis, L. (2018). A new technique to increase polyp production in stony coral aquaculture using waste fragments without polyps. Aquaculture, 484, 303-308. doi: 10.1016/j.aquaculture.2017.09.021
Tagliafico, A., Rudd, D., Rangel, M. S., Kelaher, B. P., Christidis, L., Cowden, K., Benkendorff, K. (2017). Lipid-enriched diets reduce the impacts of thermal stress in corals. Marine Ecology Progress Series, 573, 129-141. doi: 10.3354/meps12177
Toh, T. C., Ng, C. S., Peh, J. W., Toh, K. B., & Chou, L. M. (2014). Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement. PLoS One, 9(6), e98529. doi:10.1371/journal.pone.0098529
Toonen, R. J., & Wee, C. B. (2005). An experimental comparison of sediment-based biological filtration designs for recirculating aquarium systems. Aquaculture, 250(1-2), 244-255. doi: 10.1016/j.aquaculture.2005.04.063
Tout, J., Jeffries, T. C., Webster, N. S., Stocker, R., Ralph, P. J., & Seymour, J. R. (2014). Variability in microbial community composition and function between different niches within a coral reef. Microbial Ecology, 67(3), 540-552. doi: 10.1007/s00248-013-0362-5
Towle, E. K., Enochs, I. C., & Langdon, C. (2015). Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS One, 10(4), e0123394. doi: 10.1371/journal.pone.0123394
Wijgerde, T., Henkemans, P., & Osinga, R. (2012). Effects of irradiance and light spectrum on growth of the scleractinian coral Galaxea fascicularis — Applicability of LEP and LED lighting to coral aquaculture. Aquaculture, 344-349, 188-193. doi: 10.1016/j.aquaculture.2012.03.025
Wijgerde, T., Silva, C. I., Scherders, V., van Bleijswijk, J., & Osinga, R. (2014). Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biology Open, 3(6), 489-493. doi: 10.1242/bio.20147922
Winters, G., Holzman, R., Blekhman, A., Beer, S., & Loya, Y. (2009). Photographic assessment of coral chlorophyll contents: Implications for ecophysiological studies and coral monitoring. Journal of Experimental Marine Biology and Ecology, 380(1-2), 25-35. doi: 10.1016/j.jembe.2009.09.004
Wolff, N. H., Mumby, P. J., Devlin, M., & Anthony, K. R. N. (2018). Vulnerability of the Great Barrier Reef to climate change and local pressures. Global Change Biology, 24(5), 1978-1991. doi: 10.1111/gcb.14043
Yuen, Y. S., Yamazaki, S. S., Nakamura, T., Tokuda, G., & Yamasaki, H. (2009). Effects of live rock on the reef-building coral Acropora digitifera cultured with high levels of nitrogenous compounds. Aquacultural Engineering, 41(1), 35-43. doi: 10.1016/j.aquaeng.2009.06.004
Zaneveld, J. R., Burkepile, D. E., Shantz, A. A., Pritchard, C. E., McMinds, R., Payet, J. P., Thurber, R. V. (2016). Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature Communications, 7, 11833. doi: 10.1038/ncomms11833
Zheng, X., Li, Y., Chen, S., & Lin, R. (2018). Effects of calcium ion concentration on calcification rates of six stony corals: A mesocosm study. Aquaculture, 497, 246-252. doi: 10.1016/j.aquaculture.2018.07.041


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *