帳號:guest(3.145.108.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉光揚
作者(英文):Guang-Yang Liu
論文名稱:以超臨界流體製備鈀銅金屬/石墨烯觸媒於4-溴聯苯醚降解之應用
論文名稱(英文):Synthesis of palladium copper metal/graphene catalyst by supercritical fluid for degradation of 4-bromodiphenyl ether
指導教授:江政剛
指導教授(英文):Cheng-Kang Chiang
口試委員:何彥鵬
何美霖
口試委員(英文):Yen-Peng Ho
Mei-Lin HO
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610712004
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:98
關鍵詞:超臨界流體多溴聯苯醚降解鈀銅石墨烯觸媒
關鍵詞(英文):Supercritical fluidPolybrominated diphenyl ether degradationPalladium copper graphene catalyst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
超臨界流體萃取是從環境基質中分離化合物最有效的綠色化學技術之一。此外,藉由超臨界流體反應沉積可以快速產生形狀和大小受控的單金屬或雙金屬奈米粒子。本研究中,利用超臨界氫氣(scH2)將Pd或PdCu修飾在石墨烯奈米複合材料上。與氧化石墨烯(GO)和還原氧化石墨烯(rGO)相比,石墨烯薄片(GF)是更適合在用於合成出均勻且分散性良好之石墨烯基材(即Pd/GF和PdCu/GF)。在超臨界氫氣和超臨界二氧化碳(scH2/scCO2)流體系統中,作為非均相催化劑的Pd/GF和PdCu/GF分別對4-PBDE和4,4-PBDE這兩種含溴二苯醚催化降解。在最佳條件下,這兩種含溴環境污染物成功進行了脫溴和氫解反應,在反應中僅一個小時或更短的時間就產生了無毒性之降解產物。該技術除了具有成本效益,高效性和環境友好性的優勢,還能夠有效降解摻入模擬真實海沙中的4-PBDE,進一步證明了其未來巨大的潛力。
Supercritical fluid extraction is one of the most potent green chemistry techniques to separate chemical compounds from the environmental matrix. Besides, supercritical fluid reactive deposition can quickly produce the shape- and size-controlled mono- or bimetallic nanoparticles. In this study, Pd or PdCu nanoparticle decorated graphene nanocomposites were synthesized by a simple chemical reduction process using supercritical hydrogen fluid (scH2). Compared to graphene oxide (GO) and reduced graphene oxide (rGO), the graphene flake sheet (GF) is a suitable substrate for the preparation of well-dispersed Pd and PdCu nanoparticles on graphene-based heterostructures (i.e. Pd/GF and PdCu/GF, respectively). Catalytic degradation of poly-brominated diphenyl ethers, including 4-PBDE and 4,4-PBDE, were individually performed over the Pd/GF and PdCu/GF as a heterogeneous catalyst in supercritical hydrogen and supercritical carbon dioxide (scH2/scCO2) fluid system. Under the optimized condition, successful debromination and hydrogenolysis reaction happened on those two bromine-containing environmental pollutants, to generate down-stream degraded products only in an hour or less. Owing to the advantages of cost-effectiveness, high potency, and environmentally friendliness, this technique was further demonstrated its great potential by effectively degradation of 4-PBDE spiked in sea sand.
第一章 緒論
第二章 文獻討論
第三章 研究方法
第四章 結果與討論
第五章 結論
第六章 參考資料
1.De Wit, C. A., An overview of brominated flame retardants in the environment. Chemosphere 2002, 46 (5), 583-624.
2.Alcock, R. E.; Sweetman, A. J.; Prevedouros, K.; Jones, K. C., Understanding levels and trends of BDE-47 in the UK and North America: an assessment of principal reservoirs and source inputs. Environment international 2003, 29 (6), 691-698.
3.Chatterjee, D.; Dasgupta, S., Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2005, 6 (2-3), 186-205.
4.Gerecke, A. C.; Hartmann, P. C.; Heeb, N. V.; Kohler, H.-P. E.; Giger, W.; Schmid, P.; Zennegg, M.; Kohler, M., Anaerobic degradation of decabromodiphenyl ether. Environmental science & technology 2005, 39 (4), 1078-1083.
5.Boye, B.; Dieng, M. M.; Brillas, E., Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environmental Science & Technology 2002, 36 (13), 3030-3035.
6.Li, A.; Zhao, X.; Hou, Y.; Liu, H.; Wu, L.; Qu, J., The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Applied Catalysis B: Environmental 2012, 111, 628-635.
7.Zhang, W.-x., Nanoscale iron particles for environmental remediation: an overview. Journal of nanoparticle Research 2003, 5 (3-4), 323-332.
8.Wang, C.-B.; Zhang, W.-x., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental science & technology 1997, 31 (7), 2154-2156.
9.Liao, W.; Takeshita, Y.; Wai, C. M., Supercritical fluid extraction and on-line hydrodechlorination of chlorinated biphenyls catalyzed by polymer-stabilized palladium nanoparticles. Applied Catalysis B: Environmental 2009, 88 (1-2), 173-179.
10.Wania, F.; Mackay, D., The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ Pollut 1999, 100 (1-3), 223-40.
11.Watanabe, I.; Kashimoto, T.; Tatsukawa, R., Polybrominated biphenyl ethers in marine fish, shellfish and river and marine sediments in Japan. Chemosphere 1987, 16 (10-12), 2389-2396.
12.Wan, Y.; Hu, J.; Yang, M.; An, L.; An, W.; Jin, X.; Hattori, T.; Itoh, M., Characterization of trophic transfer for polychlorinated dibenzo-p-dioxins, dibenzofurans, non-and mono-ortho polychlorinated biphenyls in the marine food web of Bohai Bay, North China. Environmental science & technology 2005, 39 (8), 2417-2425.
13.Hoque, A.; Sigurdson, A. J.; Burau, K. D.; Humphrey, H. E.; Hess, K. R.; Sweeney, A. M., Cancer among a Michigan cohort exposed to polybrominated biphenyls in 1973. Epidemiology 1998, 373-378.
14.Schecter, A.; Johnson-Welch, S.; Tung, K. C.; Harris, T. R.; Päpke, O.; Rosen, R., Polybrominated diphenyl ether (PBDE) levels in livers of US human fetuses and newborns. Journal of Toxicology and Environmental Health, Part A 2006, 70 (1), 1-6.
15.Söderström, G.; Sellström, U.; de Wit, C. A.; Tysklind, M., Photolytic debromination of decabromodiphenyl ether (BDE 209). Environmental science & technology 2004, 38 (1), 127-132.
16.Robrock, K. R.; Korytár, P.; Alvarez-Cohen, L., Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. Environmental science & technology 2008, 42 (8), 2845-2852.
17.Yang, B.; Deng, S.; Yu, G.; Zhang, H.; Wu, J.; Zhuo, Q., Bimetallic Pd/Al particles for highly efficient hydrodechlorination of 2-chlorobiphenyl in acidic aqueous solution. Journal of hazardous materials 2011, 189 (1-2), 76-83.
18.Yang, B.; Deng, S.; Yu, G.; Lu, Y.; Zhang, H.; Xiao, J.; Chen, G.; Cheng, X.; Shi, L., Pd/Al bimetallic nanoparticles for complete hydrodechlorination of 3-chlorophenol in aqueous solution. Chemical engineering journal 2013, 219, 492-498.
19.Kabir, A.; Marshall, W. D., Dechlorination of pentachlorophenol in supercritical carbon dioxide with a zero-valent silver–iron bimetallic mixture. Green Chemistry 2001, 3 (1), 47-51.
20.Clifford, A. A.; Williams, J. R., Introduction to supercritical fluids and their applications. In Supercritical fluid methods and Protocols, Springer: 2000; pp 1-16.
21.Wai, C., Supercritical Fluid Extraction of Trace Metals from Solid and Liquid Materials for Analytical Application. Analytical sciences 1995, 11 (1), 165-167.
22.Zong, Y.; Watkins, J. J., Deposition of copper by the H2-assisted reduction of Cu (tmod) 2 in supercritical carbon dioxide: kinetics and reaction mechanism. Chemistry of Materials 2005, 17 (3), 560-565.
23.Wiesenburg, D. A.; Guinasso Jr, N. L., Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. Journal of chemical and engineering data 1979, 24 (4), 356-360.
24.Boehm, H.-P.; Clauss, A.; Fischer, G.; Hofmann, U., Das adsorptionsverhalten sehr dünner kohlenstoff‐folien. Zeitschrift für anorganische und allgemeine Chemie 1962, 316 (3‐4), 119-127.
25.Novoselov, K. S.; Geim, A., The rise of graphene. Nat. Mater 2007, 6 (3), 183-191.
26.Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature 2009, 457 (7230), 706-710.
27.Miller, J. R.; Outlaw, R.; Holloway, B., Graphene double-layer capacitor with ac line-filtering performance. Science 2010, 329 (5999), 1637-1639.
28.Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the american chemical society 1958, 80 (6), 1339-1339.
29.Xu, J.; Dong, G.; Jin, C.; Huang, M.; Guan, L., Sulfur and nitrogen co‐doped, few‐layered graphene oxide as a highly efficient electrocatalyst for the oxygen‐reduction reaction. ChemSusChem 2013, 6 (3), 493-499.
30.Kim, F.; Cote, L. J.; Huang, J., Graphene oxide: surface activity and two‐dimensional assembly. Advanced Materials 2010, 22 (17), 1954-1958.
31.Song, J.; Yin, Z.; Yang, Z.; Amaladass, P.; Wu, S.; Ye, J.; Zhao, Y.; Deng, W. Q.; Zhang, H.; Liu, X. W., Enhancement of photogenerated electron transport in dye‐sensitized solar cells with introduction of a reduced graphene oxide–TiO2 junction. Chemistry–A European Journal 2011, 17 (39), 10832-10837.
32.Singh, A. K.; Ribas, M. A.; Yakobson, B. I., H-spillover through the catalyst saturation: an ab initio thermodynamics study. Acs Nano 2009, 3 (7), 1657-1662.
33.Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R., The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320 (5872), 86-89.
34.Wang, X.; Tang, Y.; Gao, Y.; Lu, T., Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell. Journal of Power Sources 2008, 175 (2), 784-788.
35.Frusteri, F.; Freni, S.; Spadaro, L.; Chiodo, V.; Bonura, G.; Donato, S.; Cavallaro, S., H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications 2004, 5 (10), 611-615.
36.Li, Q.; He, R.; Gao, J.-A.; Jensen, J. O.; Bjerrum, N. J., The CO poisoning effect in PEMFCs operational at temperatures up to 200 C. Journal of the Electrochemical Society 2003, 150 (12), A1599.
37.Zhang, H.; Jin, M.; Liu, H.; Wang, J.; Kim, M. J.; Yang, D.; Xie, Z.; Liu, J.; Xia, Y., Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. Acs Nano 2011, 5 (10), 8212-8222.
38.Heijne, A. T.; Liu, F.; Weijden, R. v. d.; Weijma, J.; Buisman, C. J.; Hamelers, H. V., Copper recovery combined with electricity production in a microbial fuel cell. Environmental science & technology 2010, 44 (11), 4376-4381.
39.Zhou, C.; Szpunar, J. A., Hydrogen storage performance in Pd/graphene nanocomposites. ACS applied materials & interfaces 2016, 8 (39), 25933-25940.
40.Tian, X.-k.; Yang, C.; Zhou, Z.-x.; Liu, X.-w.; Li, Y., Active 3D Pd/graphene aerogel catalyst for hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy 2016, 41 (34), 15225-15235.
41.Wang, B.; Chang, T.-y.; Jiang, Z.; Wei, J.-j.; Fang, T., Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole. Applied Catalysis B: Environmental 2019, 251, 261-272.
42.Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS nano 2008, 2 (3), 463-470.
43.Huang, H.-H.; De Silva, K. K. H.; Kumara, G.; Yoshimura, M., Structural evolution of hydrothermally derived reduced graphene oxide. Scientific reports 2018, 8 (1), 1-9.
44.Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I., Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena 2014, 195, 145-154.
45.Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R., Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano letters 2010, 10 (3), 751-758.
46.Hafiz, S. M.; Ritikos, R.; Whitcher, T. J.; Razib, N. M.; Bien, D. C. S.; Chanlek, N.; Nakajima, H.; Saisopa, T.; Songsiriritthigul, P.; Huang, N. M., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors and Actuators B: Chemical 2014, 193, 692-700.
47.Guillory, J. K., Book Review of CRC Handbook of Chemistry and Physics. ACS Publications: 2010.
48.Chatterjee, M.; Ishizaka, T.; Kawanami, H., Hydrogenolysis/hydrogenation of diphenyl ether as a model decomposition reaction of lignin from biomass in pressurized CO2/water condition. Catalysis Today 2017, 281, 402-409.
49.Wu, B.-Z.; Sun, Y.-J.; Chen, Y.-H.; Yak, H. K.; Yu, J.-J.; Liao, W.; Chiu, K.; Peng, S.-M., Application of aluminum-supported Pd, Rh, and Rh-Pd nanoparticles in supercritical carbon dioxide system for hydrodebromination of polybrominated diphenyl ethers. Chemosphere 2016, 157, 115-123.
50.Wang, R.; Jia, J.; Zhu, Y.; Teng, Y.; Wu, J.; Cheng, J.; Wang, Q., Study on a new solid absorption refrigeration pair: active carbon fiber—methanol. 1997.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *