帳號:guest(3.135.220.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:邱傑生
論文名稱:共熔混合物合成碳量子點
論文名稱(英文):Synthesis of carbon dots using eutectic mixtures
指導教授:何彥鵬
指導教授(英文):Yen-Peng Ho
口試委員:江政剛
胡安仁
口試委員(英文):Cheng-Kang Chiang
An-ren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610712009
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:75
關鍵詞:共熔混合物
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
本論文的研究主要為使用不同共熔混合物 (eutectic mixtures) 輔助合成碳量子點 (carbon quantum dots; CQDs) 並與傳統合成法合成之碳量子點之性質做比較。首先嘗試用不同的共熔混合物以微波法並以檸檬酸及三羥甲基氨基甲烷 (tris base) 為反應物合成碳量子點,選擇以薄荷醇 (menthol)與肉豆蔻酸 (myristic acid) 莫爾數比10:1之共熔混合物進行實驗,隨後對反應溫度進行優化,在最佳反應條件下進行碳量子點合成。在相同反應物的情況下,此方法合成的碳量子點與一般微波合成法合成的碳量子點有相似的吸收光譜、螢光光譜、XPS光譜、IR光譜、粒徑大小及量子產率 (quantum yield) ,但在合成速度上比傳統合成法快速,僅需10秒即可合成量子產率達91o/o的碳量子點。
隨後便嘗試以不同的反應物合成,並也證實與使用相同反應物合成的碳量子點具備相似特性如金屬離子選擇性或捕捉細菌等。根據這些結果,使用共熔混合物不僅能具備傳統合成法合成之碳量子點的性質也能使合成的速度更加快速。使用共熔混合物進行合成除了速度較以往方法快之外,共熔混合物本身也能夠進行回收清洗並再次用於碳量子點合成。本實驗回收共熔混合物十次並進行碳量子點合成,每次合成的碳量子點皆具備接近的量子產率、吸收光譜與螢光光譜。
一、緒論 1
1、碳量子點 (carbon quantum dots) 1
1.1、簡介 1
1.2、碳量子點放光機制 1
1.3、碳量子點的合成方式 3
1.4、碳量子點的應用 9
2、深共熔溶劑 (deep eutectic solvents,DES) 12
2.1、離子液體簡介 12
2.2、離子液體合成金屬奈米粒子 13
2.3、離子液體合成碳量子點 14
2.4、深共熔溶劑 17
二、研究內容 24
1、藥品與儀器 24
1.1、藥品 24
1.2、儀器 25
2、實驗步驟 26
2.1、共熔混合物合成 26
2.2、Nitrogen doped carbon dots ( N doped CQD ) 合成 (一般微波合成法) 27
2.3、N-doped CQD合成 (共熔混合物合成法) 28
2.4、Nitrogen and sulfur co-doped carbon dots ( N,S co-doped CQD ) 合成 (一般微波合成法) 29
2.5、N,S co-doped CQD合成 (共熔混合物合成法) 29
2.6、金屬離子檢測 30
2.7、Polyethyleneimine carbon quantum dots ( PEI CQD ) 合成(共熔混合物合成法) 31
2.8、金黃色葡萄球菌捕捉 32
2.9、共熔混合物之回收與再利用 33
三、結果與討論 35
1、共熔混合物之選擇 35
2、Menthol/myristic acid共熔混合物比例優化 38
2.1、不同比例menthol/myristic acid升溫能力差異 38
2.2、溫度與加熱時間優化 40
3、一般微波合成法與共熔混合物合成法合成N doped CQD之差異 40
3.1、粒徑大小 41
3.2、官能基分布狀況 41
3.3、吸收光譜與放光光譜 43
3.4、XPS與IR光譜 45
4、共熔混合物合成法合成之N doped CQD螢光強度穩定性 50
5、一般微波合成法與共熔混合物合成法合成N,S co-doped CQD之差異 53
6、 共熔混合物合成法合成之PEI CQD捕捉金黃色葡萄球菌測試 55
7、回收共熔混合物進行N doped CQD合成 56
四、結論 59
五、參考文獻 60

1. Wang, L.; Zhou, H. S., Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application. Analytical Chemistry 2014, 86 (18), 8902-8905.
2. Jiang, C.; Wu, H.; Song, X.; Ma, X.; Wang, J.; Tan, M., Presence of photoluminescent carbon dots in Nescafe® original instant coffee: Applications to bioimaging. Talanta 2014, 127, 68-74.
3. Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S., Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications 2012, 48 (70), 8835-8837.
4. Li, X.; Zhang, S.; Kulinich, S. A.; Liu, Y.; Zeng, H., Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Scientific Reports 2014, 4 (1), 4976.
5. Zhang, J. Z., Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Accounts Chem. Res. 1997, 30 (10), 423-429.
6. Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X., Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications 2009, (34), 5118-5120.
7. Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Advanced Materials 2010, 22 (6), 734-738.
8. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B., Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie International Edition 2013, 52 (14), 3953-3957.
9. Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X., Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Analytical Chemistry 2012, 84 (12), 5351-5357.
10. Zhu, C.; Zhai, J.; Dong, S., Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical Communications 2012, 48 (75), 9367-9369.
11. Zhang, Y.-Q.; Ma, D.-K.; Zhuang, Y.; Zhang, X.; Chen, W.; Hong, L.-L.; Yan, Q.-X.; Yu, K.; Huang, S.-M., One-pot synthesis of N-doped carbon dots with tunable luminescence properties. Journal of Materials Chemistry 2012, 22 (33), 16714-16718.
12. Qian, Z.; Shan, X.; Chai, L.; Ma, J.; Chen, J.; Feng, H., Si-Doped Carbon Quantum Dots: A Facile and General Preparation Strategy, Bioimaging Application, and Multifunctional Sensor. ACS Applied Materials & Interfaces 2014, 6 (9), 6797-6805.
13. Shan, X.; Chai, L.; Ma, J.; Qian, Z.; Chen, J.; Feng, H., B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 2014, 139 (10), 2322-5.
14. Pang, G. S.; Cui, D. L.; Xu, W. G.; Feng, S. H.; Xu, R. R., Microwave radiation synthesis of layered potassium phosphatoantimonates. ACTA CHIMICA SINICA 1996, 54 (6), 575-580.
15. Liu, H.; He, Z.; Jiang, L.-P.; Zhu, J.-J., Microwave-Assisted Synthesis of Wavelength-Tunable Photoluminescent Carbon Nanodots and Their Potential Applications. ACS Applied Materials & Interfaces 2015, 7 (8), 4913-4920.
16. Wang, X.; Qu, K.; Xu, B.; Ren, J.; Qu, X., Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. Journal of Materials Chemistry 2011, 21 (8), 2445-2450.
17. Wang, Q.; Zhang, C.; Shen, G.; Liu, H.; Fu, H.; Cui, D., Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J Nanobiotechnology 2014, 12, 58.
18. Zhang, Y.; Liu, X.; Fan, Y.; Guo, X.; Zhou, L.; Lv, Y.; Lin, J., One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale 2016, 8 (33), 15281-15287.
19. Kasprzyk, W.; Bednarz, S.; Żmudzki, P.; Galica, M.; Bogdał, D., Novel efficient fluorophores synthesized from citric acid. RSC Advances 2015, 5 (44), 34795-34799.
20. Sun, J.; Yang, S.; Wang, Z.-Y.; Shen, H.; Xu, T.; Sun, L.; Li, H.; Chen, W.; Jiang, X.; Ding, G.; Kang, Z. H.; Xie, X.; Jiang, M., Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. Particle & Particle Systems Characterization 2014, 32.
21. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society 2006, 128 (24), 7756-7757.
22. Roy, P.; Chen, P.-C.; Periasamy, A. P.; Chen, Y.-N.; Chang, H.-T., Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today 2015, 18 (8), 447-458.
23. Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P., Carbon dots for optical imaging in vivo. Journal of the American Chemical Society 2009, 131 (32), 11308-11309.
24. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P., Carbon Dots for Multiphoton Bioimaging. Journal of the American Chemical Society 2007, 129 (37), 11318-11319.
25. Weng, C.-I.; Chang, H.-T.; Lin, C.-H.; Shen, Y.-W.; Unnikrishnan, B.; Li, Y.-J.; Huang, C.-C., One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosensors and Bioelectronics 2015, 68, 1-6.
26. Li, L.; Yu, B.; You, T., Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (Ⅱ) ions. Biosensors and Bioelectronics 2015, 74, 263-269.
27. Dong, Y.; Wang, R.; Li, H.; Shao, J.; Chi, Y.; Lin, X.; Chen, G., Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 2012, 50 (8), 2810-2815.
28. Shangguan, J.; Huang, J.; He, D.; He, X.; Wang, K.; Ye, R.; Yang, X.; Qing, T.; Tang, J., Highly Fe3+-Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples. Analytical Chemistry 2017, 89 (14), 7477-7484.
29. Wang, Y.; Bao, L.; Liu, Z.; Pang, D.-W., Aptamer Biosensor Based on Fluorescence Resonance Energy Transfer from Upconverting Phosphors to Carbon Nanoparticles for Thrombin Detection in Human Plasma. Analytical Chemistry 2011, 83 (21), 8130-8137.
30. Duan, N.; Wu, S.; Dai, S.; Miao, T.; Chen, J.; Wang, Z., Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchimica Acta 2015, 182 (5), 917-923.
31. Saberi, Z.; Rezaei, B.; Khayamian, T., A fluorescent aptasensor for analysis of adenosine triphosphate based on aptamer–magnetic nanoparticles and its single-stranded complementary DNA labeled carbon dots. Luminescence 2018, 33 (4), 640-646.
32. Li Chum, H.; Koran, D.; Osteryoung, R. A., The electrochemical behavior of metal carbonyls in a mixture of a room temperature molten salt and benzene. Journal of Organometallic Chemistry 1977, 140 (3), 349-359.
33. Redel, E.; Thomann, R.; Janiak, C., First Correlation of Nanoparticle Size-Dependent Formation with the Ionic Liquid Anion Molecular Volume. Inorganic Chemistry 2008, 47 (1), 14-16.
34. Wu, T.; Huang, Q.; Li, W.; Chen, G.; Ma, X.; Zeng, G., Electroreduction of Copper Dichloride Powder to Copper Nanoparticles in an Ionic Liquid. Journal of Nanomaterials 2014, 2014, 751424.
35. Yao, Y.; Izumi, R.; Tsuda, T.; Oshima, Y.; Imanishi, A.; Oda, N.; Kuwabata, S., Platinum and PtNi Nanoparticle-Supported Multiwalled Carbon Nanotube Electrocatalysts Prepared by One-Pot Pyrolytic Synthesis with an Ionic Liquid. ACS Applied Energy Materials 2019, 2 (7), 4865-4872.
36. Safavi, A.; Sedaghati, F.; Shahbaazi, H.; Farjami, E., Facile approach to the synthesis of carbon nanodots and their peroxidase mimetic function in azo dyes degradation. RSC Advances 2012, 2 (19), 7367-7370.
37. Wan, J.-Y.; Yang, Z.; Liu, Z.-G.; Wang, H.-X., Ionic liquid-assisted thermal decomposition synthesis of carbon dots and graphene-like carbon sheets for optoelectronic application. RSC Advances 2016, 6 (66), 61292-61300.
38. Li, H.; Chen, L.; Wu, H.; He, H.; Jin, Y., Ionic Liquid-Functionalized Fluorescent Carbon Nanodots and Their Applications in Electrocatalysis, Biosensing, and Cell Imaging. Langmuir 2014, 30 (49), 15016-15021.
39. Castro, H. P. S.; Souza, V. S.; Scholten, J. D.; Dias, J. H.; Fernandes, J. A.; Rodembusch, F. S.; dos Reis, R.; Dupont, J.; Teixeira, S. R.; Correia, R. R. B., Synthesis and Characterisation of Fluorescent Carbon Nanodots Produced in Ionic Liquids by Laser Ablation. Chemistry – A European Journal 2016, 22 (1), 138-143.
40. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 2003, (1), 70-71.
41. Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K., Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids:  Versatile Alternatives to Ionic Liquids. Journal of the American Chemical Society 2004, 126 (29), 9142-9147.
42. Li, X.; Hou, M.; Han, B.; Wang, X.; Zou, L., Solubility of CO2 in a Choline Chloride + Urea Eutectic Mixture. Journal of Chemical & Engineering Data 2008, 53 (2), 548-550.
43. Coulembier, O.; Lemaur, V.; Josse, T.; Minoia, A.; Cornil, J.; Dubois, P., Synthesis of poly(l-lactide) and gradient copolymers from a l-lactide/trimethylene carbonate eutectic melt. Chemical Science 2012, 3 (3), 723-726.
44. Gore, S.; Baskaran, S.; Koenig, B., Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid–urea mixtures. Green Chemistry 2011, 13 (4), 1009-1013.
45. Haerens, K.; Matthijs, E.; Binnemans, K.; Van der Bruggen, B., Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chemistry 2009, 11 (9), 1357-1365.
46. Wang, N.; Zheng, A.-Q.; Liu, X.; Chen, J.-J.; Yang, T.; Chen, M.-L.; Wang, J.-H., Deep Eutectic Solvent-Assisted Preparation of Nitrogen/Chloride-Doped Carbon Dots for Intracellular Biological Sensing and Live Cell Imaging. ACS Applied Materials & Interfaces 2018, 10 (9), 7901-7909.
47. Hu, S.; Chang, Q.; Lin, K.; Yang, J., Tailoring surface charge distribution of carbon dots through heteroatoms for enhanced visible-light photocatalytic activity. Carbon 2016, 105, 484-489.
48. Zhang, W.; He, X. W.; Chen, Y.; Li, W. Y.; Zhang, Y. K., Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectron 2011, 26 (5), 2553-8.
49. Pandiaraj, M.; Madasamy, T.; Gollavilli, P. N.; Balamurugan, M.; Kotamraju, S.; Rao, V. K.; Bhargava, K.; Karunakaran, C., Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase. Bioelectrochemistry 2013, 91, 1-7.
50. Çalhan, S. D.; Alaş, M. Ö.; Aşık, M.; Kaya, F. N. D.; Genç, R., One-pot synthesis of hydrophilic and hydrophobic fluorescent carbon dots using deep eutectic solvents as designer reaction media. Journal of Materials Science 2018, 53 (22), 15362-15375.
51. Nazari, F.; Tabaraki, R., Sensitive fluorescence detection of atorvastatin by doped carbon dots synthesized in deep eutectic media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 236, 118341.
52. Abbott, A. P.; Harris, R. C.; Ryder, K. S., Application of Hole Theory to Define Ionic Liquids by their Transport Properties. The Journal of Physical Chemistry B 2007, 111 (18), 4910-4913.
53. Maugeri, Z.; Domínguez de María, P., Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Advances 2012, 2 (2), 421-425.
54. Křížek, T.; Bursová, M.; Horsley, R.; Kuchař, M.; Tůma, P.; Čabala, R.; Hložek, T., Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids. Journal of Cleaner Production 2018, 193, 391-396.
55. Silva, J. M.; Pereira, C. V.; Mano, F.; Silva, E.; Castro, V. I. B.; Sá-Nogueira, I.; Reis, R. L.; Paiva, A.; Matias, A. A.; Duarte, A. R. C., Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Appl Bio Mater 2019, 2 (10), 4346-4355.
56. Ding, H.; Li, X.-H.; Wei, J.-S.; Li, X.-B.; Xiong, H.-M., Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics 2020, 127, 231101.

(此全文20270929後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *