帳號:guest(3.138.124.135)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳明修
作者(英文):Ming-Siou Wu
論文名稱:使用紅外光譜儀觀測並探討在高壓環境中,不同濃度離子液體與PVDF-co-HFP高分子表面之間的作用力
論文名稱(英文):Using infrared spectroscopy to study the interactions between with various ionic liquid concentration and PVDF-co-HFP polymer surface under high pressure conditions
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:賴建智
胡安仁
口試委員(英文):Chien-Chih Lai
Anren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610712011
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:66
關鍵詞:離子液體紅外光譜高壓實驗高分子分子作用力
關鍵詞(英文):ionic liquidinfrared spectroscopyhigh pressure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏收藏:0
隨著時代的進步,電器產品蓬勃發展,電池成為與我們生活中密不可分的物品之一,在電解質的研究中,離子液體具有高導電度,低揮發,高熱穩定度等特性,並將其與高分子混合,形成聚電解質,應用在電池、電容上也日新月異。本次實驗中,我們可以看到不同濃度[EMIM][TFSI]與[HMIM][TFSI]離子液體和PVDF-co-HFP高分子的混合,在常壓下,離子液體陽離子咪唑環(imidazolium) 4、5號C-H鍵的波數,隨著離子液體濃度的下降而上升,波數從3158.4cm-1到3163cm-1,陰離子[TFSI]在C-F鍵上的波數則沒有太大的變化。在高壓中,更能看到陽離子咪唑環C-H鍵波數的變化,從3171.2 cm-1到3186.3cm-1,比常壓下更加明顯,且隨著壓力越大,出來的圖譜也與常壓下,低濃度離子液體圖譜越來越相似,在紅外光譜中,除了波數的增加和波峰的改變,並無看到其他的訊號峰,因此可以證明[EMIM][TFSI]與[HMIM][TFSI]兩離子液體與PVDF-co-HFP高分子只有物理作用而沒有化學作用,且PVDF-co-HFP較易與離子液體的陽離子發生作用。
With the development of the times, electrical products have developed vigorously, and batteries have become one of the inseparable items in our lives. In the research of electrolytes, ionic liquids have characteristics such as high electrical conductivity, low volatility, and high thermal stability. Polymers are mixed to form polyelectrolytes, which are also used in batteries and capacitors. In this experiment, we can see different concentrations of [EMIM] [TFSI] and [HMIM] [TFSI] ionic liquids and PVDF-co-HFP polymers. Under normal pressure, the ionic liquid cationic imidazole ring (imidazolium) The wave number of CH bond Nos. 4 and 5 increased as the concentration of the ionic liquid decreased, and the wave number was from 3158.4 cm-1 to 3163 cm-1. The wave number of the anion [TFSI] on the CF bond did not change much. At high pressure, the change in the number of CH bond waves of the cationic imidazole ring can be seen more, from 3171.2 cm-1 to 3186.3 cm-1, which is more obvious than under normal pressure, and as the pressure increases, the resulting spectrum is also similar to normal pressure. At this time, the low-concentration ionic liquid spectra are becoming more and more similar. In the infrared spectrum, except for the increase of wave number and the change of the peak, no other signal peaks are seen, so it can be proved that [EMIM] [TFSI] and [HMIM] [TFSI] The two ionic liquids and PVDF-co-HFP polymers have only physical and no chemical interactions, and PVDF-co-HFP is more likely to interact with the cations of ionic liquids.
壹、序論 1
一、前言 1
二、離子液體 2
三、多孔聚合物 3
四、PVdF-co-HFP聚合物 5
五、多孔聚電解質與的應用 5
六、弱氫鍵 7
七、紅外光譜法 9
7.1紅外光譜原理 9
7.2 FT-IR儀器 9
八、研究動機 10
貳、實驗 12
一、實驗藥品 12
二、樣品處理 14
2.1 PVdF-co-HFP處理 14
2.2離子液體濃度處理 14
三、實驗儀器 15
3.1 紅外光譜儀 15
3.2 氟化鈣鹽片(CaF2)兩片和圓形墊片 15
3.3精密萬能鑽孔機和高速鋼鑽頭 16
3.4紅外光打片工作機 16
3.5水分天平 17
3.6水流抽氣幫浦 17
3.7電池加熱攪拌器 18
3.8顯微鏡 18
3.9 Diamond anvil cell(DAC) 18
四、實驗步驟 19
4.1常壓實驗 19
4.1.1離子液體常壓實驗 19
4.1.2高分子常壓實驗 19
4.2高壓實驗 20
4.2.1製作墊片 20
4.3壓力的校正 22
4.4數據分析 24
參、結果與討論 24
肆、結論 60
伍、參考文獻 61
1.Zhang, X.;Kar, M.;Mendes, T.C.;Wu, Y.;MacFarlane, D.R. Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors. Advanced Energy Materials 2018, 8, 1702702.
2.Chang, H.-C.;Wang, T.-H.;Burba, C.M. Probing Structures of Interfacial1-Butyl-3-MethylimidazoliumTrifluoromethanesulfonate Ionic Liquid on Nano-Aluminum Oxide Surfaces Using High-Pressure Infrared Spectroscopy. Applied Sciences 2017, 7, 855.
3.Wang, T.-H.;Hong, S.-Y.;Chang, H.-C. The validity of high pressure IR for detecting the interactions between β-cyclodextrin and imidazolium based ionic liquids. AIP Advances 2019, 9, 075007.
4.Liu, T.;Danten, Y.;Grondin, J.;Vilar, R. Solvation of AgTFSI in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid investigated by vibrational spectroscopy and DFT calculations. Journal of Raman Spectroscopy 2016, 47, 449-456.
5.Li, H.;Wang, Q.;Wang, H.;Cui, Y.;Zhu, Y.;Wang, B. Fabrication of Thermally Stable Polysulfone Microcapsules Containing [EMIm][NTf2] Ionic Liquid for Enhancement of In Situ Self-Lubrication Effect of Epoxy. Macromolecular Materials and Engineering 2016, 301, 1473-1481.
6.Köddermann, T.;Wertz, C.;Heintz, A.;Ludwig, R. Ion-Pair Formation in the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(triflyl)imide as a Function of Temperature and Concentration. ChemPhysChem 2006, 7, 1944-1949.
7.Castriota, M.;Caruso, T.;Agostino, R.G.;Cazzanelli, E.;Henderson, W.A.;Passerini, S. Raman Investigation of the Ionic Liquid N-Methyl-N-propylpyrrolidinium Bis(trifluoromethanesulfonyl)imide and Its Mixture with LiN(SO2CF3)2. The Journal of Physical Chemistry A 2005, 109, 92-96.
8.Wu, A.;Lu, F.;Sun, P.;Qiao, X.;Gao, X.;Zheng, L. Low-Molecular-Weight Supramolecular Ionogel Based on Host–Guest Interaction. Langmuir 2017, 33, 13982-13989.
9.Zhao, Q.;An, Q.F.;Ji, Y.;Qian, J.;Gao, C. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. Journal of Membrane Science 2011, 379, 19-45.
10.Zhai, L.;Cebeci, F.Ç.;Cohen, R.E.;Rubner, M.F. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Letters 2004, 4, 1349-1353.
11.Cho, C.;Jeon, J.-W.;Lutkenhaus, J.;Zacharia, N.S. Electric Field Induced Morphological Transitions in Polyelectrolyte Multilayers. ACS Applied Materials & Interfaces 2013, 5, 4930-4936.
12.Li, Q.;Quinn, J.F.;Caruso, F. Nanoporous Polymer Thin Films via Polyelectrolyte Templating. Advanced Materials 2005, 17, 2058-2062.
13.Bai, S.;Wang, Z.;Zhang, X.;Wang, B. Hydrogen-Bonding-Directed Layer-by-Layer Films:  Effect of Electrostatic Interaction on the Microporous Morphology Variation. Langmuir 2004, 20, 11828-11832.
14.Gui, Z.;Qian, J.;He, Y.;An, Q.;Wang, X.;Tian, C.;Sun, W. Tunable disintegration of layer-by-layer assembly multilayer films based on hydrolytical-polybetaine at wide-range time. Journal of Colloid and Interface Science 2011, 361, 122-128.
15.Wang, L.;Han, Y.;Feng, X.;Zhou, J.;Qi, P.;Wang, B. Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews 2016, 307, 361-381.
16.Ogoshi, T.;Takashima, S.;Yamagishi, T.-a. Molecular Recognition with Microporous Multilayer Films Prepared by Layer-by-Layer Assembly of Pillar[5]arenes. Journal of the American Chemical Society 2015, 137, 10962-10964.
17.Wu, B.-H.;Zhu, L.-W.;Ou, Y.;Tang, W.;Wan, L.-S.;Xu, Z.-K. Systematic Investigation on the Formation of Honeycomb-Patterned Porous Films from Amphiphilic Block Copolymers. The Journal of Physical Chemistry C 2015, 119, 1971-1979.
18.Li, X.-Y.;Zhao, Q.-L.;Xu, T.-T.;Huang, J.;Wei, L.-H.;Ma, Z. Highly ordered microporous polystyrene-b-poly(acrylic acid) films: Study on the influencing factors in their fabrication via a static breath-figure method. European Polymer Journal 2014, 50, 135-141.
19.Ji, Y.-L.;Gu, B.-X.;An, Q.-F.;Gao, C.-J. Recent Advances in the Fabrication of Membranes Containing “Ion Pairs” for Nanofiltration Processes. Polymers 2017, 9, 715.
20.Si, Y.;Wang, L.;Wang, X.;Tang, N.;Yu, J.;Ding, B. Ultrahigh-Water-Content, Superelastic, and Shape-Memory Nanofiber-Assembled Hydrogels Exhibiting Pressure-Responsive Conductivity. Advanced Materials 2017, 29, 1700339.
21.Florczyk, S.J.;Kim, D.-J.;Wood, D.L.;Zhang, M. Influence of processing parameters on pore structure of 3D porous chitosan–alginate polyelectrolyte complex scaffolds. Journal of Biomedical Materials Research Part A 2011, 98A, 614-620.
22.Verma, D.;Desai, M.S.;Kulkarni, N.;Langrana, N. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials. Materials Science and Engineering: C 2011, 31, 1741-1747.
23.Hariri, H.H.;Schlenoff, J.B. Saloplastic Macroporous Polyelectrolyte Complexes: Cartilage Mimics. Macromolecules 2010, 43, 8656-8663.
24.Coimbra, P.;Alves, P.;Valente, T.A.M.;Santos, R.;Correia, I.J.;Ferreira, P. Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: Synthesis and characterization. International Journal of Biological Macromolecules 2011, 49, 573-579.
25.Schaaf, P.;Schlenoff, J.B. Saloplastics: Processing Compact Polyelectrolyte Complexes. Advanced Materials 2015, 27, 2420-2432.
26.Yu, H.;Qiu, X.;Nunes, S.P.;Peinemann, K.-V. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity. Nature communications 2014, 5, 4110.
27.Dani, A.;Crocellà, V.;Magistris, C.;Santoro, V.;Yuan, J.;Bordiga, S. Click-based porous cationic polymers for enhanced carbon dioxide capture. Journal of Materials Chemistry A 2017, 5, 372-383.
28.Han, J.;Du, Z.;Zou, W.;Li, H.;Zhang, C. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions. Journal of hazardous materials 2014, 276, 225-231.
29.Desiraju, G.R.;Steiner, T. The weak hydrogen bond: in structural chemistry and biology; International Union of Crystal, 2001; 0198509707.
30.Stuart, B. Infrared spectroscopy. Kirk‐Othmer Encyclopedia of Chemical Technology 20001-18.
31.Casal, H.L.;Mantsch, H.H. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1984, 779, 381-401.
32.Sarma, R.H.;Lee, C.-H.;Evans, F.E.;Yathindra, N.;Sundaralingam, M. Probing the interrelation between the glycosyl torsion, sugar pucker, and the backbone conformation in C (8) substituted adenine nucleotides by proton and proton-phosphorus-31 fast Fourier transfer nuclear magnetic resonance methods and conformational energy calculations. Journal of the American Chemical Society 1974, 96, 7337-7348.
33.Wong, P.;Moffatt, D. The uncoupled OH or OD stretch in water as an internal pressure gauge for high-pressure infrared spectroscopy of aqueous systems. Applied spectroscopy 1987, 41, 1070-1072.
34.Rey, I.;Johansson, P.;Lindgren, J.;Lassègues, J.C.;Grondin, J.;Servant, L. Spectroscopic and Theoretical Study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI). The Journal of Physical Chemistry A 1998, 102, 3249-3258.
35.Liu, T.;Danten, Y.;Grondin, J.;Vilar, R. Solvation of AgTFSI in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid investigated by vibrational spectroscopy and DFT calculations. Journal of Raman Spectroscopy 2016, 47, 449-456.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *