帳號:guest(3.148.105.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:郭少云
作者(英文):Shao-Yun Kuo
論文名稱:使用紅外光譜儀觀測並探討在高壓環境中,不同濃度離子液體Li[TFSI]G3的作用力
論文名稱(英文):Using infrared spectroscopy to study the interactions between with various ionic liquid concentration and Li[TFSI]G3 under high pressure conditions
指導教授:張海舟
指導教授(英文):Hai-Chou chang
口試委員:賴建智
胡安仁
口試委員(英文):Chien-Chih Lai
Anren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610712015
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:60
關鍵詞:離子液體紅外光譜高壓
關鍵詞(英文):ionic liquidinfrared spectroscopyhigh pressure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
在一個資訊發展蓬勃的現代,鋰電池在現代科技中是非常重要的存在,無論是通訊手機、純電汽車、筆記型電腦、心律調整器…等等。鋰電池不但有高容量、重量輕、能量密度高等等,但是在鋰電池的電解液選擇上,就必須嚴格選擇,有些電解液可以儲存較多能量,但是可能就有起火燃燒甚至爆炸的危險。離子液體是一個低揮發、高導電性、高熱穩定的液態鹽,適合作為電解液的使用。本篇論文研究,Bis(trifluoromethane) sulfonimide Lithium與Triethylene glycol dimethyl ether混和成的Li[TFSI]G3和Lithium trifluoroacetate與Triethylene glycol dimethyl ether混和成的Li[TFA]G3,結構變化。在常壓光譜可觀察到在G3上有853.02cm-1上有訊號,但是隨加入的Li[TFSI]增多,會發現訊號逐漸分成2訊號,在高壓實驗下,發現G3的受壓力影響,波數從2880.00cm-1到2885.79cm-1,但是加入Li[TFSI]之後,發現加入Li[TFSI]越多,波數從2888.1cm-1到2889.30cm-1 ,可以觀察到Li[TFSI]讓G3有穩定的效果。另一個Li[TFA]G3中,發現Li[TFA]與Li[TFSI]有相同效果,可以將G3穩定。
In a tech-flourishing modern time, lithium battery plays a crucial role in contemporary technology. Installed in cellphones、pure electric cars、laptops、heart rate regulators among others, lithium battery has many advantages of high capacity、light weight、high power density and so on. However, when you are choosing a lithium battery, you have to do it strictly. Some electrolyte can store much more power, but it may cause a fire even an explosion. Ionic liquid is liquid salt which has low volatility、high conductivity、high thermal stability, suitable for being electrolyte. The essay focuses on Li[TFSI]G3 mixed by Bis(trifluoromethane) sulfonimide Lithium and Triethylene Glycol dimethyl ether and Li[TFA]G3 mixed by Lithium trifluoroacetate and Triethylene glycol dimethyl ether.Li[TFA]G3 mixed from dimethyl ether has structural changes. There is a signal detectable at 853.02cm-1 on atmospheric pressure spectrum. Nevertheless, with the increasing amounts of Li[TFSI], you would find that it can be divided into two signals. During a high pressure experiment, you could dicover that G3 affected by pressure ranges from 2800.00 cm-1 to 2885.79cm-1. yet, when Li[TFSI] added, you will find that the more Li[TFSI] you add, the more stable G3 will be at 2888.1cm-1 to 2889.30cm-1. Likewise, in Li[TFA]G3, you can find that Li[TFA]and Li[TFSI] has the same effect of stabilizing G3.
目錄
壹、 緒論 1
一、 前言
二、 離子液體
三、 溶劑化離子液體
貳、 實驗部分 5
一、 實驗藥品
二、 實驗方法
2.1、 合成離子液體
三、 實驗使用儀器
3.1、傅列轉換式紅外光譜儀
3.3、 硒化鋅鹽片(ZnSe)
3.4、 紅外光打片工作機
3.5、 Diamond anvil cell(DAC)
3.6、 鎳鉻合金墊片
3.7、 水分分析天平
3.8、 顯微鏡
四、 實驗步驟
4.9、 常壓實驗
4.10、 常壓實驗打片及測量
4.11、 高壓實驗
4.12、 數據處理
參、 結果與討論 15
肆、 結論 55
伍、 參考文獻 57
陸、 附錄 61

1. Wang, Q., et al., Thermal runaway caused fire and explosion of lithium ion battery. Journal of power sources, 2012. 208: p. 210-224.
2. Eyckens, D.J. and L.C. Henderson, A review of solvate ionic liquids: Physical parameters and synthetic applications. Frontiers in chemistry, 2019. 7: p. 263.
3. Howlett, P.C., D.R. MacFarlane, and A.F. Hollenkamp, High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochemical and Solid State Letters, 2004. 7(5): p. A97.
4. Angell, C.A., Y. Ansari, and Z. Zhao, Ionic liquids: past, present and future. Faraday Discussions, 2012. 154: p. 9-27.
5. Wang, Q., et al., Extractive desulfurization of fuels using trialkylamine-based protic ionic liquids. Separation and Purification Technology, 2020. 231: p. 115923.
6. Wang, T., et al., Synthesis of novel magnetic ionic liquids as high efficiency catalysts for extraction-catalytic oxidative desulfurization in fuel oil. New Journal of Chemistry, 2019. 43(48): p. 19232-19241.
7. Zheng, C., et al., Dissolution and suspension of asphaltenes with ionic liquids. Fuel, 2019. 238: p. 129-138.
8. Zhang, X., et al., Immobilized protic ionic liquids: Efficient catalysts for CO2 fixation with epoxides. Journal of CO2 Utilization, 2017. 17: p. 37-42.
9. Dokko, K., et al., Solvate ionic liquid electrolyte for Li–S batteries. Journal of The Electrochemical Society, 2013. 160(8): p. A1304.
10. Mandai, T., et al., Criteria for solvate ionic liquids. Physical chemistry chemical physics, 2014. 16(19): p. 8761-8772.
11. Ueno, K., et al., Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? The Journal of Physical Chemistry B, 2012. 116(36): p. 11323-11331.
12. Watanabe, M., et al., From ionic liquids to solvate ionic liquids: challenges and opportunities for next generation battery electrolytes. Bulletin of the Chemical Society of Japan, 2018. 91(11): p. 1660-1682.
13. Ge, X. and X. Wang, Estimation of freezing point depression, boiling point elevation, and vaporization enthalpies of electrolyte solutions. Industrial & engineering chemistry research, 2009. 48(4): p. 2229-2235.
14. Wong, P. and D. Moffatt, The uncoupled OH or OD stretch in water as an internal pressure gauge for high-pressure infrared spectroscopy of aqueous systems. Applied spectroscopy, 1987. 41(6): p. 1070-1072.
15. Rey, I., et al., Spectroscopic and theoretical study of (CF3SO2) 2N-(TFSI-) and (CF3SO2) 2NH (HTFSI). The Journal of Physical Chemistry A, 1998. 102(19): p. 3249-3258.
16. Liu, T., et al., Solvation of AgTFSI in 1‐ethyl‐3‐methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquid investigated by vibrational spectroscopy and DFT calculations. Journal of Raman Spectroscopy, 2016. 47(4): p. 449-456.
17. Kam, W., et al., Electrical, structural, and thermal studies of antimony trioxide-doped poly (acrylic acid)-based composite polymer electrolytes. Ionics, 2014. 20(5): p. 665-674.
18. Machida, K. and T. Miyazawa, Infrared and Raman spectra of polyethyleneglycol dimethylethers in the liquid state. Spectrochimica acta, 1964. 20(12): p. 1865-1873.
19. Christe, K.O. and D. Naumann, Vibrational spectra of trifluoroacetates. Spectrochimica Acta Part A: Molecular Spectroscopy, 1973. 29(12): p. 2017-2024.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *