帳號:guest(18.191.135.73)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳承修
作者(英文):Cheng-Hsun Wu
論文名稱:開發金黃色葡萄球菌抗藥性生物標記之質譜檢驗法
指導教授:何彥鵬
指導教授(英文):Yen-Peng Ho
口試委員:張凱誌
何彥鵬
江政剛
口試委員(英文):Kai-Chih Chang
Yen-Peng Ho
Cheng-Kang Chiang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610712019
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:107
關鍵詞:金黃色葡萄球菌抗藥性生物標記質譜檢驗法核酸適體磁性粒子
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
近年來由於抗生素的濫用,使得細菌產生多重抗藥性而形成超級細菌,抗藥性的形成會提升治癒的難度同時也增加了致死的機率,為公共衛生安全的一大危險,本實驗目標針對近年來常見的耐甲氧西林金黃色葡萄球菌 (methicillin-resistant S.aureus, MRSA),由於產生抗藥性之特異蛋白 PBP 2a (penicillin-binding protein 2a),其造成危害對於病人造成一定的威脅。在近年來常用的檢測方法聚合酶連鎖反應(PCR)會有費時且產生偽陽性的憂慮,若使用抗體免疫檢測法,隨然檢測簡單、靈敏,選擇性強,但依賴昂貴且重現性差的動物衍生抗體。本研究之材料具有易合成,和良好收集之特性,於磁性粒子表面修飾鏈親和素 (streptavidin),與修飾有生物素 (biotin)的核酸適體進行結合,生物素與鏈親和素的結合是已知自然界中最強的非共價相互作用之一,修飾上對 PBP 2a 具有高特異性的核酸適體 (aptamer),可有效捕捉細菌上特異性蛋白,且成本以及合成時間皆優於抗體檢測方法。結合一維聚丙醯胺膠體電泳分析,可於膠上快速識別107 CFU/mL細菌捕捉後PBP 2a蛋白,最後利用質譜法確定特異性蛋白並進一步利用質譜法可以實現105 CFU/mL鑑別生物標記胜肽,並經由蛋白質資料庫準確識別出是否具有青黴素結合蛋白 2a,並且在複雜細菌環境中仍然展現出有效的鑑別成果。
一、緒論 1
1、前言 1
2、細菌之抗藥性 1
3、抗生素之抗藥機制 3
4、細菌介紹 5
4.1、金黃色葡萄球菌 5
4.2、耐甲氧西林金黃色葡萄球菌 6
5、核酸適體 8
5.1、核酸適體篩選 8
5.2、核酸適體之應用 15
6、質譜檢測法 19
6.1、質譜檢測法於抗藥性細菌上之應用 22
7、研究動機 24
二、研究內容 27
1、藥品與儀器 27
1.1、藥品 27
1.2、儀器 28
1.3、儀器參數與條件 30
1.4、資料庫收尋參數設定 31
2、實驗方法 32
3、實驗步驟 32
3.1、細菌樣品製備 32
3.2、細菌蛋白質破菌 33
3.3、Rapid Gold BCA Assay 估計細菌蛋白質含量 35
3.4、細菌蛋白質水解 37
3.5、合成表面修飾核酸適體之磁性粒子 39
3.6、核酸適體修飾磁性粒子檢測細菌樣品 40
3.7、一維聚丙醯胺膠體電泳分析 40
三、結果與討論 45
1、利用不同方法破菌金黃色葡萄球菌 45
2、青黴素結合蛋白 2a標準品進行水解後質譜結果 46
3、核酸適體利用生物素與鏈親和素間交互作用鍵結於磁性粒子上結合時間優化 49
4、核酸適體修飾磁性粒子捕捉青黴素結合蛋白 2a 51
5、金黃色葡萄球菌與耐甲氧西林金黃色葡萄球菌分析 56
5.1、金黃色葡萄球菌與耐甲氧西林金黃色葡萄球菌進行水 解後質譜分析 56
5.2、抗藥性金黃色葡萄球菌利用核酸適體修飾磁性粒子捕捉後,結合一維聚丙醯胺膠體電泳分析鑑定識別 58
5.3、一維聚丙醯胺膠體電泳分析青黴素結合蛋白2a之偵測極限 60
6、利用質譜法進行蛋白分析 62
6.1、In-gel digestion 膠體消化分析 62
6.2、將蛋白從磁性粒子洗脫再進行水溶液消化 64
6.3、ON BEADS消化分析法 66
6.4、應用於不同MRSA臨床樣品之分析 69
6.5、MRSA、E.coli (大腸桿菌)、Acinetobacter baumannii (AB菌) 混合並利用核酸適體修飾磁性粒子捕捉 78
6.6、MRSA於人工尿液內進行處理及分析 79
6.7、核酸適體修飾磁性粒子材料之重複性 81
7、比較本篇研究之檢測方法與其他相關研究之偵測極限 82
四、結論 83
五、參考文獻 85
六、附錄 95

1. Opota, O.; Croxatto, A.; Prod'hom, G.; Greub, G., Blood culture-based diagnosis of bacteraemia: state of the art. Clinical Microbiology and Infection 2015, 21 (4), 313-322.
2. Van Duin, D.; Paterson, D. L., Multidrug-resistant bacteria in the community: trends and lessons learned. Infectious disease clinics 2016, 30 (2), 377-390.
3. Page, M. I.; Tsang, W. Y.; Ahmed, N., Comparison of the mechanisms of reactions of β-lactams and β-sultams, including their reactions with some serine enzymes. Journal of Physical Organic Chemistry 2006, 19 (8‐9), 446-451.
4. Moscow J, M. C., Cowan KH, General Mechanisms of Drug Resistance. Holland-Frei Cancer Medicine 2013, 6th edition.
5. Wilke, M. S.; Lovering, A. L.; Strynadka, N. C., β-Lactam antibiotic resistance: a current structural perspective. Current opinion in microbiology 2005, 8 (5), 525-533.
6. Page, M. I.; Tsang, W. Y.; Ahmed, N., Comparison of the mechanisms of reactions of β‐lactams and β‐sultams, including their reactions with some serine enzymes. Journal of physical organic chemistry 2006, 19 (8‐9), 446-451.
7. Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L., Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Reviews Drug Discovery 2007, 6 (1), 29-40.
8. WHO, Antimicrobial resistance: global report on surveillance 2014. 2014.
9. Ogawara, H., Antibiotic resistance in pathogenic and producing bacteria, with special reference to beta-lactam antibiotics. Microbiological reviews 1981, 45 4, 591-619.
10. Pavilonyte, Z.; Kaukeniene, R.; Antusevas, A.; Pavilonis, A., Staphylococcus aureus prevalence among hospitalized patients. Medicina-Lithuania 2008, 44 (8), 593-600.
11. Bien, J.; Sokolova, O.; Bozko, P., Characterization of virulence factors of Staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. Journal of pathogens 2011, 2011.
12. Kaneko, J.; Kamio, Y., Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Bioscience, biotechnology, and biochemistry 2004, 68 (5), 981-1003.
13. Foster, T. J., Immune evasion by staphylococci. Nature reviews microbiology 2005, 3 (12), 948-958.
14. Stapleton, P. D.; Taylor, P. W., Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science progress 2002, 85 (1), 57-72.
15. Hackbarth, C. J.; Kocagoz, T.; Kocagoz, S.; Chambers, H. F., Point mutations in Staphylococcus aureus PBP 2 gene affect penicillin-binding kinetics and are associated with resistance. Antimicrobial agents and chemotherapy 1995, 39 (1), 103-106.
16. Al Jalaf, M.; Fadali, H.; Alanee, R.; Najjar, F.; Al Deesi, Z.; Seliem, R. M.; Nilles, E. J., Methicillin resistant Staphylococcus aureus in emergency department patients in the United Arab Emirates. BMC emergency medicine 2018, 18 (1), 1-4.
17. Kourtis, A. P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M. A.; Dumyati, G.; Petit, S., Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections—United States. Morbidity and Mortality Weekly Report 2019, 68 (9), 214.
18. Klotz, M.; Zimmermann, S.; Opper, S.; Heeg, K.; Mutters, R., Possible risk for re-colonization with methicillin-resistant Staphylococcus aureus (MRSA) by faecal transmission. International journal of hygiene and environmental health 2005, 208 (5), 401-405.
19. Dancer, S. J., Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. The Lancet infectious diseases 2008, 8 (2), 101-113.
20. Gehanno, J.; Louvel, A.; Nouvellon, M.; Caillard, J.; Pestel-Caron, M., Aerial dispersal of meticillin-resistant Staphylococcus aureus in hospital rooms by infected or colonised patients. Journal of Hospital Infection 2009, 71 (3), 256-262.
21. Cosgrove, S. E.; Sakoulas, G.; Perencevich, E. N.; Schwaber, M. J.; Karchmer, A. W.; Carmeli, Y., Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clinical infectious diseases 2003, 36 (1), 53-59.
22. Humphreys, H., Can we do better in controlling and preventing methicillin-resistant Staphylococcus aureus (MRSA) in the intensive care unit (ICU)? European Journal of Clinical Microbiology & Infectious Diseases 2008, 27 (6), 409-413.
23. Gu, M. B.; Kim, H.-S., Biosensors based on aptamers and enzymes. Springer: 2014; Vol. 140.
24. He, X.; Li, Y.; He, D.; Wang, K.; Shangguan, J.; Shi, H., Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. Journal of biomedical nanotechnology 2014, 10 (7), 1359-1368.
25. Toh, S. Y.; Citartan, M.; Gopinath, S. C.; Tang, T.-H., Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosensors and bioelectronics 2015, 64, 392-403.
26. Zhou, J.; Rossi, J., Aptamers as targeted therapeutics: current potential and challenges. Nature reviews Drug discovery 2017, 16 (3), 181-202.
27. Bayat, P.; Nosrati, R.; Alibolandi, M.; Rafatpanah, H.; Abnous, K.; Khedri, M.; Ramezani, M., SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018, 154, 132-155.
28. Kaur, H., Recent developments in cell-SELEX technology for aptamer selection. Biochimica et Biophysica Acta (BBA)-General Subjects 2018, 1862 (10), 2323-2329.
29. Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B., Recent advances in SELEX technology and aptamer applications in biomedicine. International journal of molecular sciences 2017, 18 (10), 2142.
30. Mayer, G.; Ahmed, M.-S. L.; Dolf, A.; Endl, E.; Knolle, P. A.; Famulok, M., Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nature protocols 2010, 5 (12), 1993-2004.
31. Chang, Y.-C.; Kao, W.-C.; Wang, W.-Y.; Wang, W.-Y.; Yang, R.-B.; Peck, K., Identification and characterization of oligonucleotides that inhibit Toll‐like receptor 2‐associated immune responses. The FASEB Journal 2009, 23 (9), 3078-3088.
32. Wang, C.-W.; Chung, W.-H.; Cheng, Y.-F.; Ying, N.-W.; Peck, K.; Chen, Y.-T.; Hung, S.-I., A new nucleic acid–based agent inhibits cytotoxic T lymphocyte–mediated immune disorders. Journal of allergy and clinical immunology 2013, 132 (3), 713-722. e11.
33. Mercier, M.-C.; Dontenwill, M.; Choulier, L., Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers 2017, 9 (6), 69.
34. Nutiu, R.; Li, Y., In vitro selection of structure‐switching signaling aptamers. Angewandte Chemie International Edition 2005, 44 (7), 1061-1065.
35. Lauridsen, L. H.; Doessing, H. B.; Long, K. S.; Nielsen, A. T., A capture-SELEX strategy for multiplexed selection of RNA aptamers against small molecules. In Synthetic Metabolic Pathways, Springer: 2018; pp 291-306.
36. Komarova, N.; Andrianova, M.; Glukhov, S.; Kuznetsov, A., Selection, characterization, and application of ssDNA aptamer against furaneol. Molecules 2018, 23 (12), 3159.
37. Paniel, N.; Istamboulié, G.; Triki, A.; Lozano, C.; Barthelmebs, L.; Noguer, T., Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor. Talanta 2017, 162, 232-240.
38. Reinemann, C.; Von Fritsch, U. F.; Rudolph, S.; Strehlitz, B., Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosensors and Bioelectronics 2016, 77, 1039-1047.
39. Spiga, F. M.; Maietta, P.; Guiducci, C., More DNA–aptamers for small drugs: A capture–SELEX coupled with surface plasmon resonance and high-throughput sequencing. ACS Combinatorial Science 2015, 17 (5), 326-333.
40. Sefah, K.; Shangguan, D.; Xiong, X.; O'donoghue, M. B.; Tan, W., Development of DNA aptamers using Cell-SELEX. Nature protocols 2010, 5 (6), 1169-1185.
41. Wang, J.; Gao, T.; Luo, Y.; Wang, Z.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Pei, R., In vitro selection of a DNA aptamer by cell-SELEX as a molecular probe for cervical cancer recognition and imaging. Journal of Molecular Evolution 2019, 87 (2), 72-82.
42. He, J.; Wang, J.; Zhang, N.; Shen, L.; Wang, L.; Xiao, X.; Wang, Y.; Bing, T.; Liu, X.; Li, S., In vitro selection of DNA aptamers recognizing drug-resistant ovarian cancer by cell-SELEX. Talanta 2019, 194, 437-445.
43. Iaboni, M.; Fontanella, R.; Rienzo, A.; Capuozzo, M.; Nuzzo, S.; Santamaria, G.; Catuogno, S.; Condorelli, G.; De Franciscis, V.; Esposito, C. L., Targeting insulin receptor with a novel internalizing aptamer. Molecular Therapy-Nucleic Acids 2016, 5, e365.
44. Civit, L.; Taghdisi, S. M.; Jonczyk, A.; Haßel, S. K.; Gröber, C.; Blank, M.; Stunden, H. J.; Beyer, M.; Schultze, J.; Latz, E., Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells. Biochimie 2018, 145, 53-62.
45. Hamedani, N. S.; Müller, J., Capillary electrophoresis for the selection of DNA aptamers recognizing activated protein C. In Nucleic Acid Aptamers, Springer: 2016; pp 61-75.
46. Dong, L.; Zhou, H.; Zhao, M.; Gao, X.; Liu, Y.; Liu, D.; Guo, W.; Hu, H.; Xie, Q.; Fan, J., Phosphorothioate-modified AP613-1 specifically targets GPC3 when used for hepatocellular carcinoma cell imaging. Molecular Therapy-Nucleic Acids 2018, 13, 376-386.
47. Liu, X.; Li, H.; Jia, W.; Chen, Z.; Xu, D., Selection of aptamers based on a protein microarray integrated with a microfluidic chip. Lab on a Chip 2017, 17 (1), 178-185.
48. Takenaka, M.; Okumura, Y.; Amino, T.; Miyachi, Y.; Ogino, C.; Kondo, A., DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorganic & Medicinal Chemistry Letters 2017, 27 (4), 954-957.
49. Kimoto, M.; Yamashige, R.; Matsunaga, K.-i.; Yokoyama, S.; Hirao, I., Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nature biotechnology 2013, 31 (5), 453-457.
50. Sefah, K.; Yang, Z.; Bradley, K. M.; Hoshika, S.; Jiménez, E.; Zhang, L.; Zhu, G.; Shanker, S.; Yu, F.; Turek, D., In vitro selection with artificial expanded genetic information systems. Proceedings of the National Academy of Sciences 2014, 111 (4), 1449-1454.
51. Biondi, E.; Lane, J. D.; Das, D.; Dasgupta, S.; Piccirilli, J. A.; Hoshika, S.; Bradley, K. M.; Krantz, B. A.; Benner, S. A., Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen. Nucleic acids research 2016, 44 (20), 9565-9577.
52. Cheng, C.; Chen, Y. H.; Lennox, K. A.; Behlke, M. A.; Davidson, B. L., In vivo SELEX for Identification of Brain-penetrating Aptamers. Molecular Therapy-Nucleic Acids 2013, 2, e67.
53. Bruno, J. G.; Carrillo, M. P.; Phillips, T.; Andrews, C. J., A novel screening method for competitive FRET-aptamers applied to E. coli assay development. Journal of fluorescence 2010, 20 (6), 1211-1223.
54. Labib, M.; Zamay, A. S.; Muharemagic, D.; Chechik, A. V.; Bell, J. C.; Berezovski, M. V., Aptamer-based viability impedimetric sensor for viruses. Analytical Chemistry 2012, 84 (4), 1813-1816.
55. Gopinath, S. C.; Hayashi, K.; Kumar, P. K., Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. Journal of virology 2012, 86 (12), 6732-6744.
56. Fukuda, K.; Vishinuvardhan, D.; Sekiya, S.; Kakiuchi, N.; Shimotohno, K.; Kumar, P.; Nishikawa, S. In Specific RNA aptamers to NS3 protease domain of hepatitis C virus, Nucleic acids symposium series, 1997; pp 237-238.
57. Kumar, P.; Machida, K.; Urvil, P. T.; Kakiuchi, N.; Vishnuvardhan, D.; Shimotohno, K.; Taira, K.; Nishikawa, S., Isolation of RNA aptamers specific to the NS3 protein of hepatitis C virus from a pool of completely random RNA. Virology 1997, 237 (2), 270-282.
58. Boiziau, C.; Dausse, E.; Yurchenko, L.; Toulmé, J.-J., DNA Aptamers selected against the HIV-1trans-activation-responsive RNA element form RNA-DNA kissing complexes. Journal of Biological Chemistry 1999, 274 (18), 12730-12737.
59. Gopinath, S. C.; Kawasaki, K.; Kumar, P. K. In Selection of RNA-aptamer against human influenza B virus, Nucleic Acids Symposium Series, Oxford University Press: 2005; pp 85-86.
60. Jang, K. J.; Lee, N.-R.; Yeo, W.-S.; Jeong, Y.-J.; Kim, D.-E., Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase. Biochemical and biophysical research communications 2008, 366 (3), 738-744.
61. Zheng, C. Y.; Pestilli, F.; Rokem, A. In Deconvolution of high dimensional mixtures via boosting, with application to diffusion-weighted MRI of human brain, Advances in neural information processing systems, 2014; pp 2699-2707.
62. Wang, K.; Fan, D.; Liu, Y.; Wang, E., Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosensors and Bioelectronics 2015, 73, 1-6.
63. Ye, X.; Shi, H.; He, X.; Wang, K.; He, D.; Yan, L. a.; Xu, F.; Lei, Y.; Tang, J.; Yu, Y., Iodide-responsive Cu–Au nanoparticle-based colorimetric platform for ultrasensitive detection of target cancer cells. Analytical chemistry 2015, 87 (14), 7141-7147.
64. Zhang, F.; Li, S.; Cao, K.; Wang, P.; Su, Y.; Zhu, X.; Wan, Y., A microfluidic love-wave biosensing device for PSA detection based on an aptamer beacon probe. Sensors 2015, 15 (6), 13839-13850.
65. Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Xu, Y., Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters' fluorescence. Biosensors and Bioelectronics 2015, 64, 345-351.
66. Li, X.; An, Y.; Jin, J.; Zhu, Z.; Hao, L.; Liu, L.; Shi, Y.; Fan, D.; Ji, T.; Yang, C. J., Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. Analytical chemistry 2015, 87 (9), 4941-4948.
67. Ababneh, N.; Alshaer, W.; Al-Louzi, O.; Mahafzah, A.; El-Khateeb, M.; Hillaireau, H.; Noiray, M.; Fattal, E.; Ismail, S., In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker. Nucleic acid therapeutics 2013, 23 (6), 401-407.
68. Iwagawa, T.; Ohuchi, S. P.; Watanabe, S.; Nakamura, Y., Selection of RNA aptamers against mouse embryonic stem cells. Biochimie 2012, 94 (1), 250-257.
69. Burke, D. H.; Hoffman, D. C.; Brown, A.; Hansen, M.; Pardi, A.; Gold, L., RNA aptamers to the peptidyl transferase inhibitor chloramphenicol. Chemistry & biology 1997, 4 (11), 833-843.
70. Kim, Y.-J.; Kim, Y. S.; Niazi, J. H.; Gu, M. B., Electrochemical aptasensor for tetracycline detection. Bioprocess and biosystems engineering 2010, 33 (1), 31-37.
71. Pang, Y.; Wan, N.; Shi, L.; Wang, C.; Sun, Z.; Xiao, R.; Wang, S., Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@ Au. Analytica chimica acta 2019, 1077, 288-296.
72. Zhang, Y.; Zhu, L.; He, P.; Zi, F.; Hu, X.; Wang, Q., Sensitive assay of Escherichia coli in food samples by microchip capillary electrophoresis based on specific aptamer binding strategy. Talanta 2019, 197, 284-290.
73. Gupta, R.; Kumar, A.; Kumar, S.; Pinnaka, A. K.; Singhal, N. K., Naked eye colorimetric detection of Escherichia coli using aptamer conjugated graphene oxide enclosed Gold nanoparticles. Sensors and Actuators B: Chemical 2021, 329, 129100.
74. Qiao, J.; Meng, X.; Sun, Y.; Li, Q.; Zhao, R.; Zhang, Y.; Wang, J.; Yi, Z., Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. Journal of microbiological methods 2018, 153, 92-98.
75. Anhalt, J. P.; Fenselau, C., Identification of bacteria using mass spectrometry. Analytical chemistry 1975, 47 (2), 219-225.
76. Hiraoka, K.; Kudaka, I., Electrospray interface for liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 1990, 4 (12), 519-526.
77. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. Rapid communications in mass spectrometry 1988, 2 (8), 151-153.
78. Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W., Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. Journal of the American Chemical Society 1999, 121 (4), 806-812.
79. Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the american society for mass spectrometry 1994, 5 (11), 976-989.
80. Cain, T. C.; Lubman, D. M.; Weber Jr, W. J., Differentiation of bacteria using protein profiles from matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Rapid Communications in Mass Spectrometry 1994, 8 (12), 1026-1030.
81. Lay Jr, J. O., MALDI‐TOF mass spectrometry of bacteria. Mass spectrometry reviews 2001, 20 (4), 172-194.
82. Hu, A.; Tsai, P.-J.; Ho, Y.-P., Identification of microbial mixtures by capillary electrophoresis/selective tandem mass spectrometry. Analytical chemistry 2005, 77 (5), 1488-1495.
83. Van Veen, S.; Claas, E.; Kuijper, E. J., High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. Journal of clinical microbiology 2010, 48 (3), 900-907.
84. Kassim, A.; Pflüger, V.; Premji, Z.; Daubenberger, C.; Revathi, G., Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC microbiology 2017, 17 (1), 1-8.
85. Ziegler, D.; Pothier, J. F.; Ardley, J.; Fossou, R. K.; Pflüger, V.; De Meyer, S.; Vogel, G.; Tonolla, M.; Howieson, J.; Reeve, W., Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Applied microbiology and biotechnology 2015, 99 (13), 5547-5562.
86. Li, H.; Zhu, J., Differentiating antibiotic-resistant staphylococcus aureus using secondary electrospray ionization tandem mass spectrometry. Analytical chemistry 2018, 90 (20), 12108-12115.
87. Idelevich, E.; Sparbier, K.; Kostrzewa, M.; Becker, K., Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clinical Microbiology and Infection 2018, 24 (7), 738-743.
88. Drabińska, N.; Hewett, K.; White, P.; Avison, M. B.; Persad, R.; Ratcliffe, N. M.; de Lacy Costello, B., Application of a solid-phase microextraction-gas chromatography-mass spectrometry/metal oxide sensor system for detection of antibiotic susceptibility in urinary tract infection-causing Escherichia coli–A proof of principle study. Advances in Medical Sciences 2022, 67 (1), 1-9.
89. Lu, W.-P.; Sun, Y.; Bauer, M. D.; Paule, S.; Koenigs, P. M.; Kraft, W. G., Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with β-lactams using electrospray mass spectrometry. Biochemistry 1999, 38 (20), 6537-6546.
90. Lu, J.-J.; Tsai, F.-J.; Ho, C.-M.; Liu, Y.-C.; Chen, C.-J., Peptide biomarker discovery for identification of methicillin-resistant and vancomycin-intermediate Staphylococcus aureus strains by MALDI-TOF. Analytical chemistry 2012, 84 (13), 5685-5692.
91. Lai, H.-Z.; Wang, S.-G.; Wu, C.-Y.; Chen, Y.-C., Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry. Analytical chemistry 2015, 87 (4), 2114-2120.
92. Nemr, C. R.; Smith, S. J.; Liu, W.; Mepham, A. H.; Mohamadi, R. M.; Labib, M.; Kelley, S. O., Nanoparticle-mediated capture and electrochemical detection of methicillin-resistant Staphylococcus aureus. Analytical chemistry 2019, 91 (4), 2847-2853.
93. Drabik, A.; Ner-Kluza, J.; Mielczarek, P.; Civit, L.; Mayer, G. n.; Silberring, J., Advances in the Study of Aptamer–Protein Target Identification Using the Chromatographic Approach. Journal of proteome research 2018, 17 (6), 2174-2181.
(此全文20250321後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *