帳號:guest(52.14.89.212)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉勇聲
作者(英文):Yong-Seng Low
論文名稱:利用蛋白質質體學鑑定出生長抑制與DNA受損誘發蛋白質34對日本腦炎病毒複製之影響
論文名稱(英文):Proteomic profiling identified host growth arrest DNA-damage inducible protein 34 involved in Japanese encephalitis virus replication.
指導教授:張瑞宜
指導教授(英文):Ruey-Yi Chang
口試委員:江政剛
楊雪慧
口試委員(英文):Cheng-Kang Chiang
Hsueh-Hui Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610713001
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:56
關鍵詞(英文):sfRNAJEVGADD34eIF2α
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
All arthropod-borne flaviviruses produce the small noncoding RNA (sfRNA) derived from the highly conserved regions of the viral genome's 3'-untranslated region (UTR). Deleting the stem-loop II (SLII) at the 3'-UTR abolished the formation of the sfRNA in infected cells. The sfRNA-deficient mutant (MT) showed a slower growth rate, smaller plaques, and fewer viral titers than wild-type (WT) viruses. In this study, the small plaques formed by MT viruses could enlarge with prolonged incubation, suggesting that the sfRNA affects cell growth. To investigate host proteins that may involve the slow growth rate of the MT virus, proteomic profiling of uninfected, WT, and MT virus-infected cells was compared. Mass spectrometry screened 2515 proteins with differential expression. One of the most differentially expressed proteins, growth arrest and DNA damage-inducible protein 34 (GADD34), was further examined. GADD34 is upregulated in WT-infected cells but less abundantly expressed in the MT virus-infected cells, as evidenced by qRT-PCR and western blot analyses. Inhibition of GADD34 did not affect uninfected cells but impaired cell viability during both virus infections. Inhibition of GADD34 decreased the NS5 translation of the MT virus but not the WT virus. The function of GADD34 is to mediate the dephosphorylation of the eukaryotic initiation factor alpha subunit (eIF2α), which prevents the inhibition of cap-dependent translation. The eIF2α in the MT virus-infected cells was highly phosphorylated but much less in WT virus-infected cells, leading to less abundant protein expression in the MT virus-infected cells. Taken together, these results provide preliminary evidence that sfRNA may involve in translation and cell growth by association with the host GADD34 protein through dephosphorylation of eIF2α.
INTRODUCTION 1
MATERIALS AND METHODS 7
RESULTS 17
DISCUSSION 23
REFERENCES 27
TABLES AND FIGURES 35
1. Morse SS. 1995. Factors in the emergence of infectious diseases. Emerg Infect Dis 1:7-15.
2. Unni SK, Ruzek D, Chhatbar C, Mishra R, Johri MK, Singh SK. 2011. Japanese encephalitis virus: from genome to infectome. Microbes Infect 13:312-21.
3. Lindenbach B, Thiel H, Rice C. 2001. Flaviviridae: the viruses and their replication, vol 1 Lippincott William & Wilkins. Philadelphia, PA 991-1041.
4. Misra UK, Kalita J. 2010. Overview: Japanese encephalitis. Prog Neurobiol 91:108-20.
5. Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT. 2000. Japanese encephalitis. J Neurol Neurosurg Psychiatry 68:405-15.
6. Mackenzie JS, Gubler DJ, Petersen LR. 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98-109.
7. Erlanger TE, Weiss S, Keiser J, Utzinger J, Wiedenmayer K. 2009. Past, present, and future of Japanese encephalitis. Emerg Infect Dis 15:1-7.
8. Umenai T, Krzysko R, Bektimirov TA, Assaad FA. 1985. Japanese encephalitis: current worldwide status. Bull World Health Organ 63:625-31.
9. Vaughn DW, Hoke CH, Jr. 1992. The epidemiology of Japanese encephalitis: prospects for prevention. Epidemiol Rev 14:197-221.
10. Chambers TJ, Hahn CS, Galler R, Rice CM. 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649-88.
11. van den Hurk AF, Ritchie SA, Mackenzie JS. 2009. Ecology and geographical expansion of Japanese encephalitis virus. Annu Rev Entomol 54:17-35.
12. Monath TP, Bruke DS, C..J.Leake. 1988. The arboviruses: epidemiology and ecology, p p.63-92, CRC press,Inc, vol III.
13. Villordo SM, Carballeda JM, Filomatori CV, Gamarnik AV. 2016. RNA Structure Duplications and Flavivirus Host Adaptation. Trends Microbiol 24:270-283.
14. Yu L, Nomaguchi M, Padmanabhan R, Markoff L. 2008. Specific requirements for elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral replication. Virology 374:170-85.
15. Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE. 2017. The 5' and 3' Untranslated Regions of the Flaviviral Genome. Viruses 9.
16. Yun SI, Choi YJ, Song BH, Lee YM. 2009. 3' cis-acting elements that contribute to the competence and efficiency of Japanese encephalitis virus genome replication: functional importance of sequence duplications, deletions, and substitutions. J Virol 83:7909-30.
17. Lin KC, Chang HL, Chang RY. 2004. Accumulation of a 3'-terminal genome fragment in Japanese encephalitis virus-infected mammalian and mosquito cells. J Virol 78:5133-8.
18. Liu R, Yue L, Li X, Yu X, Zhao H, Jiang Z, Qin E, Qin C. 2010. Identification and characterization of small sub-genomic RNAs in dengue 1-4 virus-infected cell cultures and tissues. Biochem Biophys Res Commun 391:1099-103.
19. Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X, Yang Y, Shi PY, Nix JC, Beckham JD, Kieft JS. 2016. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354:1148-1152.
20. Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, Shi PY, Hall RA, Khromykh AA. 2008. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe 4:579-91.
21. Cumberworth SL, Clark JJ, Kohl A, Donald CL. 2017. Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses. Cell Microbiol 19.
22. Goertz GP, Abbo SR, Fros JJ, Pijlman GP. 2018. Functional RNA during Zika virus infection. Virus Res 254:41-53.
23. Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J. 2012. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA 18:2029-40.
24. Moon SL, Blackinton JG, Anderson JR, Dozier MK, Dodd BJ, Keene JD, Wilusz CJ, Bradrick SS, Wilusz J. 2015. XRN1 stalling in the 5' UTR of Hepatitis C virus and Bovine Viral Diarrhea virus is associated with dysregulated host mRNA stability. PLoS Pathog 11:e1004708.
25. Moon SL, Dodd BJ, Brackney DE, Wilusz CJ, Ebel GD, Wilusz J. 2015. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology 485:322-9.
26. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP. 2012. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol 86:13486-500.
27. Pompon J, Manuel M, Ng GK, Wong B, Shan C, Manokaran G, Soto-Acosta R, Bradrick SS, Ooi EE, Misse D, Shi PY, Garcia-Blanco MA. 2017. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog 13:e1006535.
28. Goertz GP, Fros JJ, Miesen P, Vogels CBF, van der Bent ML, Geertsema C, Koenraadt CJM, van Rij RP, van Oers MM, Pijlman GP. 2016. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. J Virol 90:10145-10159.
29. Fan YH, Nadar M, Chen CC, Weng CC, Lin YT, Chang RY. 2011. Small noncoding RNA modulates Japanese encephalitis virus replication and translation in trans. Virol J 8:492.
30. Chang RY, Hsu TW, Chen YL, Liu SF, Tsai YJ, Lin YT, Chen YS, Fan YH. 2013. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Vet Microbiol 166:11-21.
31. Schuessler A, Funk A, Lazear HM, Cooper DA, Torres S, Daffis S, Jha BK, Kumagai Y, Takeuchi O, Hertzog P, Silverman R, Akira S, Barton DJ, Diamond MS, Khromykh AA. 2012. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J Virol 86:5708-18.
32. Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ, Tan HC, Sessions OM, Ward AM, Gubler DJ, Harris E, Garcia-Blanco MA, Ooi EE. 2015. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350:217-21.
33. Liu Y, Liu H, Zou J, Zhang B, Yuan Z. 2014. Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology 448:15-25.
34. Chen YS, Fan YH, Tien CF, Yueh A, Chang RY. 2018. The conserved stem-loop II structure at the 3' untranslated region of Japanese encephalitis virus genome is required for the formation of subgenomic flaviviral RNA. PLoS One 13:e0201250.
35. Baer A, Kehn-Hall K. 2014. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J Vis Exp doi:10.3791/52065:e52065.
36. Cruz DJ, Shin HJ. 2007. Application of a focus formation assay for detection and titration of porcine epidemic diarrhea virus. J Virol Methods 145:56-61.
37. Kimura-Kuroda J, Yasui K. 1985. A focus assay method for Japanese encephalitis virus using complement and anti-virus serum. Microbiol Immunol 29:55-63.
38. Lin YL, Liao CL, Yeh CT, Chang CH, Huang YL, Huang YY, Jan JT, Chin C, Chen LK. 1996. A highly attenuated strain of Japanese encephalitis virus induces a protective immune response in mice. Virus Res 44:45-56.
39. Goh KC, Tang CK, Norton DC, Gan ES, Tan HC, Sun B, Syenina A, Yousuf A, Ong XM, Kamaraj US, Cheung YB, Gubler DJ, Davidson A, St John AL, Sessions OM, Ooi EE. 2016. Molecular determinants of plaque size as an indicator of dengue virus attenuation. Sci Rep 6:26100.
40. Kato F, Tajima S, Nakayama E, Kawai Y, Taniguchi S, Shibasaki K, Taira M, Maeki T, Lim CK, Takasaki T, Saijo M. 2017. Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016. Sci Rep 7:16160.
41. Eliuk S, Makarov A. 2015. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu Rev Anal Chem (Palo Alto Calif) 8:61-80.
42. Zubarev RA, Makarov A. 2013. Orbitrap mass spectrometry. Anal Chem 85:5288-96.
43. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. 2005. The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430-43.
44. Perry RH, Cooks RG, Noll RJ. 2008. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661-99.
45. Rojas M, Vasconcelos G, Dever TE. 2015. An eIF2alpha-binding motif in protein phosphatase 1 subunit GADD34 and its viral orthologs is required to promote dephosphorylation of eIF2alpha. Proc Natl Acad Sci U S A 112:E3466-75.
46. Choy MS, Yusoff P, Lee IC, Newton JC, Goh CW, Page R, Shenolikar S, Peti W. 2015. Structural and Functional Analysis of the GADD34:PP1 eIF2alpha Phosphatase. Cell Rep 11:1885-91.
47. Novoa I, Zeng H, Harding HP, Ron D. 2001. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153:1011-22.
48. Tu YC, Yu CY, Liang JJ, Lin E, Liao CL, Lin YL. 2012. Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. J Virol 86:10347-58.
49. Zhang S, Sun Y, Chen H, Dai Y, Zhan Y, Yu S, Qiu X, Tan L, Song C, Ding C. 2014. Activation of the PKR/eIF2alpha signaling cascade inhibits replication of Newcastle disease virus. Virol J 11:62.
50. Fusade-Boyer M, Dupre G, Bessiere P, Khiar S, Quentin-Froignant C, Beck C, Lecollinet S, Rameix-Welti MA, Eleouet JF, Tangy F, Lajoie B, Bertagnoli S, Vidalain PO, Gallardo F, Volmer R. 2019. Evaluation of the Antiviral Activity of Sephin1 Treatment and Its Consequences on eIF2alpha Phosphorylation in Response to Viral Infections. Front Immunol 10:134.
51. Tsai KN, Tsang SF, Huang CH, Chang RY. 2007. Defective interfering RNAs of Japanese encephalitis virus found in mosquito cells and correlation with persistent infection. Virus Res 124:139-50.
52. Zhou S-J. 2007. Cellular proteins bind to the 3’-untranslated region of genome and the termini of antigenome of Japanese encephalitis virus.
53. Glish GL, Vachet RW. 2003. The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2:140-50.
54. Aebersold R, Mann M. 2003. Mass spectrometry-based proteomics. Nature 422:198-207.
55. Connor JH, Weiser DC, Li S, Hallenbeck JM, Shenolikar S. 2001. Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol Cell Biol 21:6841-50.
56. Brush MH, Weiser DC, Shenolikar S. 2003. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23:1292-303.
57. Zhou W, Jeyaraman K, Yusoff P, Shenolikar S. 2013. Phosphorylation at tyrosine 262 promotes GADD34 protein turnover. J Biol Chem 288:33146-55.
58. Peng X, Yang T, He L, Chen X, Jiang Y, Zhang H, Liu H, Peng Y. 2018. Impact of GADD34 on Apoptosis of Tonsillar Mononuclear Cells from IgA Nephropathy Patients by Regulating eIF2 alpha Phosphorylation. Cell Physiol Biochem 50:2203-2215.
59. Alfred N, Qian B, Qin X, Yin X, Prajapati M, Dou Y, Li Y, Zhang Z. 2021. Inhibition of eIF2alpha Phosphorylation by Peste des Petits Ruminant Virus Phosphoprotein Facilitates Viral Replication. Front Vet Sci 8:645571.
60. Farook JM, Shields J, Tawfik A, Markand S, Sen T, Smith SB, Brann D, Dhandapani KM, Sen N. 2013. GADD34 induces cell death through inactivation of Akt following traumatic brain injury. Cell Death Dis 4:e754.
61. Li H, Li W, Zhang S, Qiu M, Li Z, Lin Y, Tan J, Qiao W. 2022. Enterovirus 71 Activates GADD34 via Precursor 3CD to Promote IRES-Mediated Viral Translation. Microbiol Spectr doi:10.1128/spectrum.01388-21:e0138821.
62. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M, Barry N, Sigurdardottir A, Bertolotti A. 2015. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348:239-42.
63. Chen Y, Podojil JR, Kunjamma RB, Jones J, Weiner M, Lin W, Miller SD, Popko B. 2019. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain 142:344-361.
64. Liao Y, Gu F, Mao X, Niu Q, Wang H, Sun Y, Song C, Qiu X, Tan L, Ding C. 2016. Regulation of de novo translation of host cells by manipulation of PERK/PKR and GADD34-PP1 activity during Newcastle disease virus infection. J Gen Virol 97:867-879.
65. Zhao D, Yang J, Han K, Liu Q, Wang H, Liu Y, Huang X, Zhang L, Li Y. 2019. The unfolded protein response induced by Tembusu virus infection. BMC Vet Res 15:34.
66. Tan Z, Zhang W, Sun J, Fu Z, Ke X, Zheng C, Zhang Y, Li P, Liu Y, Hu Q, Wang H, Zheng Z. 2018. ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells. J Neuroinflammation 15:275.
67. Holczer M, Banhegyi G, Kapuy O. 2016. GADD34 Keeps the mTOR Pathway Inactivated in Endoplasmic Reticulum Stress Related Autophagy. PLoS One 11:e0168359.

(此全文20250712後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *