帳號:guest(3.16.51.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:MALLIGA PERUMAL
作者(英文):MALLIGA PERUMAL
論文名稱:In silico approaches to identify activators against AMP activated protein kinase (AMPK)
論文名稱(英文):In silico approaches to identify activators against AMP activated protein kinase (AMPK)
指導教授:梁剛荐
指導教授(英文):Max K.Leong
口試委員:翁慶豐
許豪仁
口試委員(英文):Ching-Feng Weng
Hao-Jen Hsu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610713009
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:45
關鍵詞(英文):AMPKIn SilicoMolecular Docking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
AMP-activated protein kinase (AMPK) is an energy sensor, play key role in the regu-lation of critical cellular pathways. When activated AMPK increase ATP generating catabolic process and decrease ATP consuming anabolic process. Studies confirmed reduced AMP-acti¬vated protein kinase (AMPK) activity in metabolic disease-induced diabetic chronic kidney diseases. In the kidney as a metabolic sensor activate tubular transport and helps renal cells to survive low energy states. The specific AMPK activator A-769662, leading to improvement in energy metabolism and kidney fibrosis. Thus becomes a therapeutic target, the discovery of potent and specific AMPK activators independent of the AMP sensing mechanism, for the pre¬vention and treatment of metabolic disorders appears to be more important.
Phosphorylation of Thr172 in α subunit is require to maintain AMPK activity. Under ATP Depletion AMPK kinase undergo allosteric activation, the first direct allosteric activator of AMPK, A-769662, was reported by Cool and colleagues in 2006 that activates AMPK by modulating the β subunit. The preclinical and clinical evidence supporting pharmacological activation of AMPK particularly, a direct activator PF-06409577 was reported to activate AMPK β1 complexes represents a potent strategy for the treatment of DN in humans. Among the two known β subunits, β1 subunit is highly abundant in kidney as suggested by mRNA levels. Thus aim of present proposal to screen natural compounds against β1 selective AMPK, through docking and highlights the computer-aided drug design in silico approaches and their limitations for screening natural compounds as activators target in the treatment of kidney dis¬eases.
Abstract i
Table of Contents ii
1. Introduction 1
1.1 Critical Amino Acids 3
1.2 Activation from the ADaM site: 5
1.3 Dual activation of AMPK (nucleotide and Adam site) 6
1.4 Docking studies - Adam site 6
1.5 Molecular docking based Virtual Screening and Machine Learning 7
1.6 Structure Based - Molecular Docking 8
2. Materials and Methods 10
2.1 Protein preparation for molecular docking study 10
2.2 Protein similarity study for molecular docking study. 10
2.3 Ligand preparation 11
2.4 Active Site Prediction for molecular docking 11
2.5 Molecular Docking using GOLD package 12
2.6 Targeted Scoring Functions 12
2.7 Application to test cases 13
3. Results 14
3.1 Sampling of molecular docking 14
3.2 Selectivity 14
3.3 Docking for Selectivity study. 15
3.4 Pose Selection 15
4. Conclusion 16
Ranking Efficiency 16
5. References 17

Figures
Figure 1. Depicts the structure of AMPK domains 28
Figure 2. Superposition of Prepared Proteins 29
Figure 3. Comparing the Active site residues between A Castp and B Ligplot 30
Figure 4. Ramachandran plot protein 4QFR with respect to their pdb structure 31
Figure 5. Process of molecular docking 32
Figure 7. Pose Selcetion 34
Figure 8. Pose Selection 35
Figure 9. Ranking Efficiency 36

Tables
Table 1. RMSD distributions of AMPK proteins 37
Table 2. Structure file of four known allosteric modulators 38
Table 3. Active Site Residues and Atoms 39
Table 4. Success Rates of 3 Scoring Functions 43
Table 5. Pocket dynamics among proteins. 43
Table 6. Refined data set combination of top 15 highest score and lowest RMSD 44
Table 7. Hydrogen bonding and hydrophobic contacting residues between Native protein and prepared protein with compound A-769662 45

1. Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B. B.; Stein, C.; Basit, A.; Chan, J. C. N.; Mbanya, J. C.; Pavkov, M. E.; Ramachandaran, A.; Wild, S. H.; James, S.; Herman, W. H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E. J.; Magliano, D. J., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022, 183, 109119.
2. Parving, H.-H., Initiation and progression of diabetic nephropathy. Mass Medical Soc: 1996; Vol. 335, pp 1682-1683.
3. Andersen, A. R.; Christiansen, J. S.; Andersen, J. K.; Kreiner, S.; Deckert, T., Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983, 25 (6), 496-501.
4. Tsai, E. B.; Sherry, N. A.; Palmer, J. P.; Herold, K. C.; for the, D. P. T. S. G., The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia 2006, 49 (2), 261-270.
5. Olsson, L.; Grill, V.; Midthjell, K.; Ahlbom, A.; Andersson, T.; Carlsson, S., Mortality in adult-onset autoimmune diabetes is associated with poor glycemic control: results from the HUNT Study. Diabetes care 2013, 36 (12), 3971-8.
6. Cheung, N.; Mitchell, P.; Wong, T. Y., Diabetic retinopathy. The Lancet 2010, 376 (9735), 124-136.
7. Rosenberger, D. C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R. D., Challenges of neuropathic pain: focus on diabetic neuropathy. Journal of neural transmission (Vienna, Austria : 1996) 2020, 127 (4), 589-624.
8. Rossing, K.; Christensen, P. K.; Hovind, P.; Tarnow, L.; Rossing, P.; Parving, H. H., Progression of nephropathy in type 2 diabetic patients. Kidney international 2004, 66 (4), 1596-605.
9. Dalla Vestra, M.; Saller, A.; Bortoloso, E.; Mauer, M.; Fioretto, P., Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes & metabolism 2000, 26 Suppl 4, 8-14.
10. Hovind, P.; Rossing, P.; Tarnow, L.; Smidt, U. M.; Parving, H.-H., Progression of diabetic nephropathy. Kidney international 2001, 59 (2), 702-709.
11. Kramer, H. J.; Nguyen, Q. D.; Curhan, G.; Hsu, C. Y., Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. Jama 2003, 289 (24), 3273-7.
12. Christensen, P. K.; Larsen, S.; Horn, T.; Olsen, S.; Parving, H. H., Renal function and structure in albuminuric type 2 diabetic patients without retinopathy. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2001, 16 (12), 2337-47.
13. Brugnara, L.; Novials, A.; Ortega, R.; De Rivas, B., Clinical characteristics, complications and management of patients with type 2 diabetes with and without diabetic kidney disease (DKD): A comparison of data from a clinical database. Endocrinologia, diabetes y nutricion 2018, 65 (1), 30-38.
14. Dugan, L. L.; You, Y.-H.; Ali, S. S.; Diamond-Stanic, M.; Miyamoto, S.; DeCleves, A.-E.; Andreyev, A.; Quach, T.; Ly, S.; Shekhtman, G.; Nguyen, W.; Chepetan, A.; Le, T. P.; Wang, L.; Xu, M.; Paik, K. P.; Fogo, A.; Viollet, B.; Murphy, A.; Brosius, F.; Naviaux, R. K.; Sharma, K., AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Investig. 2013, 123 (11), 4888-4899.
15. Rodríguez, C.; Sánchez, A.; Sáenz-Medina, J.; Muñoz, M.; Hernández, M.; López, M.; Rivera, L.; Contreras, C.; Prieto, D., Activation of AMP kinase ameliorates kidney vascular dysfunction, oxidative stress and inflammation in rodent models of obesity. Br. J. Pharmacol. 2021, 178 (20), 4085-4103.
16. Cameron, K. O.; Kung, D. W.; Kalgutkar, A. S.; Kurumbail, R. G.; Miller, R.; Salatto, C. T.; Ward, J.; Withka, J. M.; Bhattacharya, S. K.; Boehm, M.; Borzilleri, K. A.; Brown, J. A.; Calabrese, M.; Caspers, N. L.; Cokorinos, E.; Conn, E. L.; Dowling, M. S.; Edmonds, D. J.; Eng, H.; Fernando, D. P.; Frisbie, R.; Hepworth, D.; Landro, J.; Mao, Y.; Rajamohan, F.; Reyes, A. R.; Rose, C. R.; Ryder, T.; Shavnya, A.; Smith, A. C.; Tu, M.; Wolford, A. C.; Xiao, J., Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy. Journal of medicinal chemistry 2016, 59 (17), 8068-8081.
17. Su, L.; Yuan, H.; Zhang, H.; Wang, R.; Fu, K.; Yin, L.; Ren, Y.; Liu, H.; Fang, Q.; Wang, J.; Guo, D., PF-06409577 inhibits renal cyst progression by concurrently inhibiting the mTOR pathway and CFTR channel activity. FEBS open bio 2022, 12 (10), 1761-1770.
18. Salatto, C. T.; Miller, R. A.; Cameron, K. O.; Cokorinos, E.; Reyes, A.; Ward, J.; Calabrese, M. F.; Kurumbail, R. G.; Rajamohan, F.; Kalgutkar, A. S.; Tess, D. A.; Shavnya, A.; Genung, N. E.; Edmonds, D. J.; Jatkar, A.; Maciejewski, B. S.; Amaro, M.; Gandhok, H.; Monetti, M.; Cialdea, K.; Bollinger, E.; Kreeger, J. M.; Coskran, T. M.; Opsahl, A. C.; Boucher, G. G.; Birnbaum, M. J.; DaSilva-Jardine, P.; Rolph, T., Selective Activation of AMPK β1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy. The Journal of pharmacology and experimental therapeutics 2017, 361 (2), 303-311.
19. Stapleton, D.; Mitchelhill, K. I.; Gao, G.; Widmer, J.; Michell, B. J.; Teh, T.; House, C. M.; Fernandez, C. S.; Cox, T.; Witters, L. A.; Kemp, B. E., Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 1996, 271 (2), 611-4.
20. López-Novoa, J. M.; Rodríguez-Peña, A. B.; Ortiz, A.; Martínez-Salgado, C.; López Hernández, F. J., Etiopathology of chronic tubular, glomerular and renovascular nephropathies: clinical implications. Journal of translational medicine 2011, 9, 13.
21. Lin, C. H.; Chang, Y. C.; Chuang, L. M., Early detection of diabetic kidney disease: Present limitations and future perspectives. World journal of diabetes 2016, 7 (14), 290-301.
22. Declèves, A. E.; Mathew, A. V.; Cunard, R.; Sharma, K., AMPK mediates the initiation of kidney disease induced by a high-fat diet. Journal of the American Society of Nephrology : JASN 2011, 22 (10), 1846-55.
23. Salatto, C. T.; Miller, R. A.; Cameron, K. O.; Cokorinos, E.; Reyes, A.; Ward, J.; Calabrese, M. F.; Kurumbail, R. G.; Rajamohan, F.; Kalgutkar, A. S.; Tess, D. A.; Shavnya, A.; Genung, N. E.; Edmonds, D. J.; Jatkar, A.; Maciejewski, B. S.; Amaro, M.; Gandhok, H.; Monetti, M.; Cialdea, K.; Bollinger, E.; Kreeger, J. M.; Coskran, T. M.; Opsahl, A. C.; Boucher, G. G.; Birnbaum, M. J.; DaSilva-Jardine, P.; Rolph, T., Selective Activation of AMPK beta1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy. The Journal of pharmacology and experimental therapeutics 2017, 361 (2), 303-311.
24. Crute, B. E.; Seefeld, K.; Gamble, J.; Kemp, B. E.; Witters, L. A., Functional Domains of the α1 Catalytic Subunit of the AMP-activated Protein Kinase. J. Biol. Chem. 1998, 273 (52), 35347-35354.
25. Stein, S. C.; Woods, A.; Jones, N. A.; Davison, M. D.; Carling, D., The regulation of AMP-activated protein kinase by phosphorylation. J.Biol.Chem. 2000, 345 Pt 3 (Pt 3), 437-443.
26. Hawley, S. A.; Boudeau, J.; Reid, J. L.; Mustard, K. J.; Udd, L.; Makela, T. P.; Alessi, D. R.; Hardie, D. G., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of biology 2003, 2 (4), 28.
27. Woods, A.; Dickerson, K.; Heath, R.; Hong, S. P.; Momcilovic, M.; Johnstone, S. R.; Carlson, M.; Carling, D., Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell metabolism 2005, 2 (1), 21-33.
28. Pang, T.; Xiong, B.; Li, J.-Y.; Qiu, B.-Y.; Jin, G.-Z.; Shen, J.-K.; Li, J., Conserved α-Helix Acts as Autoinhibitory Sequence in AMP-activated Protein Kinase α Subunits. J. Biol. Chem. 2007, 282 (1), 495-506.
29. Xiao, B.; Sanders, M. J.; Underwood, E.; Heath, R.; Mayer, F. V.; Carmena, D.; Jing, C.; Walker, P. A.; Eccleston, J. F.; Haire, L. F.; Saiu, P.; Howell, S. A.; Aasland, R.; Martin, S. R.; Carling, D.; Gamblin, S. J., Structure of mammalian AMPK and its regulation by ADP. Nature 2011, 472 (7342), 230-233.
30. Chen, L.; Xin, F.-J.; Wang, J.; Hu, J.; Zhang, Y.-Y.; Wan, S.; Cao, L.-S.; Lu, C.; Li, P.; Yan, S. F.; Neumann, D.; Schlattner, U.; Xia, B.; Wang, Z.-X.; Wu, J.-W., Conserved regulatory elements in AMPK. Nature 2013, 498 (7453), E8-E10.
31. Xiao, B.; Sanders, M. J.; Carmena, D.; Bright, N. J.; Haire, L. F.; Underwood, E.; Patel, B. R.; Heath, R. B.; Walker, P. A.; Hallen, S.; Giordanetto, F.; Martin, S. R.; Carling, D.; Gamblin, S. J., Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 2013, 4, 3017.
32. Dyck, J. R. B.; Gao, G.; Widmer, J.; Stapleton, D.; Fernandez, C. S.; Kemp, B. E.; Witters, L. A., Regulation of 5f 5, P. A.; Hallenotein Kinase Activity by the Noncatalytic β and γ Subunits. J. Biol. Chem. 1996, 271 (30), 17798-17803.
33. Iseli, T. J.; Walter, M.; van Denderen, B. J. W.; Katsis, F.; Witters, L. A.; Kemp, B. E.; Michell, B. J.; Stapleton, D., AMP-activated Protein Kinase β Subunit Tethers α and γ Subunits via Its C-terminal Sequence (186–270). J. Biol. Chem. 2005, 280 (14), 13395-13400.
34. Oakhill, J. S.; Chen, Z.-P.; Scott, J. W.; Steel, R.; Castelli, L. A.; Ling, N.; Macaulay, S. L.; Kemp, B. E., β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). PNAS 2010, 107 (45), 19237-19241.
35. Polekhina, G.; Gupta, A.; Michell, B. J.; van Denderen, B.; Murthy, S.; Feil, S. C.; Jennings, I. G.; Campbell, D. J.; Witters, L. A.; Parker, M. W.; Kemp, B. E.; Stapleton, D., AMPK beta subunit targets metabolic stress sensing to glycogen. Current biology : CB 2003, 13 (10), 867-71.
36. Iseli, T. J.; Oakhill, J. S.; Bailey, M. F.; Wee, S.; Walter, M.; van Denderen, B. J.; Castelli, L. A.; Katsis, F.; Witters, L. A.; Stapleton, D.; Macaulay, S. L.; Michell, B. J.; Kemp, B. E., AMP-activated protein kinase subunit interactions: beta1:gamma1 association requires beta1 Thr-263 and Tyr-267. J. Biol. Chem. 2008, 283 (8), 4799-807.
37. Sanders, M. J.; Ali, Z. S.; Hegarty, B. D.; Heath, R.; Snowden, M. A.; Carling, D., Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J. Biol. Chem. 2007, 282 (45), 32539-48.
38. Viana, R.; Towler, M. C.; Pan, D. A.; Carling, D.; Viollet, B.; Hardie, D. G.; Sanz, P., A conserved sequence immediately N-terminal to the Bateman domains in AMP-activated protein kinase gamma subunits is required for the interaction with the beta subunits. J. Biol. Chem. 2007, 282 (22), 16117-16125.
39. Cheung, P. C.; Salt, I. P.; Davies, S. P.; Hardie, D. G.; Carling, D., Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 2000, 346 Pt 3 (Pt 3), 659-669.
40. Bateman, A., The structure of a domain common to archaebacteria and the homocystinuria disease protein. TIBS 1997, 22 (1), 12-13.
41. Xiao, B.; Heath, R.; Saiu, P.; Leiper, F. C.; Leone, P.; Jing, C.; Walker, P. A.; Haire, L.; Eccleston, J. F.; Davis, C. T.; Martin, S. R.; Carling, D.; Gamblin, S. J., Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 2007, 449 (7161), 496-500.
42. Sabina, R. L.; Patterson, D.; Holmes, E. W., 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. JBC 1985, 260 (10), 6107-6114.
43. Zhang, Y.-L.; Guo, H.; Zhang, C.-S.; Lin, S.-Y.; Yin, Z.; Peng, Y.; Luo, H.; Shi, Y.; Lian, G.; Zhang, C. J. C. m., AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell. Metab. 2013, 18 (4), 546-555.
44. Cool, B.; Zinker, B.; Chiou, W.; Kifle, L.; Cao, N.; Perham, M.; Dickinson, R.; Adler, A.; Gagne, G.; Iyengar, R.; Zhao, G.; Marsh, K.; Kym, P.; Jung, P.; Camp, H. S.; Frevert, E., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell metabolism 2006, 3 (6), 403-16.
45. Scott, J. W.; Ling, N.; Issa, S. M.; Dite, T. A.; O'Brien, M. T.; Chen, Z. P.; Galic, S.; Langendorf, C. G.; Steinberg, G. R.; Kemp, B. E.; Oakhill, J. S., Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Chemistry & biology 2014, 21 (5), 619-27.
46. Ducommun, S.; Ford, R. J.; Bultot, L.; Deak, M.; Bertrand, L.; Kemp, B. E.; Steinberg, G. R.; Sakamoto, K., Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. Am J Physiol Endocrinol Metab 2014, 306 (6), E688-96.
47. Guigas, B.; Sakamoto, K.; Taleux, N.; Reyna, S. M.; Musi, N.; Viollet, B.; Hue, L., Beyond AICA riboside: in search of new specific AMP-activated protein kinase activators. IUBMB life 2009, 61 (1), 18-26.
48. Calabrese, Matthew F.; Rajamohan, F.; Harris, Melissa S.; Caspers, Nicole L.; Magyar, R.; Withka, Jane M.; Wang, H.; Borzilleri, Kris A.; Sahasrabudhe, Parag V.; Hoth, Lise R.; Geoghegan, Kieran F.; Han, S.; Brown, J.; Subashi, Timothy A.; Reyes, Allan R.; Frisbie, Richard K.; Ward, J.; Miller, Russell A.; Landro, James A.; Londregan, Allyn T.; Carpino, Philip A.; Cabral, S.; Smith, Aaron C.; Conn, Edward L.; Cameron, Kimberly O.; Qiu, X.; Kurumbail, Ravi G., Structural Basis for AMPK Activation: Natural and Synthetic Ligands Regulate Kinase Activity from Opposite Poles by Different Molecular Mechanisms. Structure 2014, 22 (8), 1161-1172.
49. Zadra, G.; Photopoulos, C.; Tyekucheva, S.; Heidari, P.; Weng, Q. P.; Fedele, G.; Liu, H.; Scaglia, N.; Priolo, C.; Sicinska, E.; Mahmood, U.; Signoretti, S.; Birnberg, N.; Loda, M., A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol. Med. 2014, 6 (4), 519-38.
50. Feng, D.; Biftu, T.; Romero, F. A.; Kekec, A.; Dropinski, J.; Kassick, A.; Xu, S.; Kurtz, M. M.; Gollapudi, A.; Shao, Q.; Yang, X.; Lu, K.; Zhou, G.; Kemp, D.; Myers, R. W.; Guan, H.-P.; Trujillo, M. E.; Li, C.; Weber, A.; Sebhat, I. K., Discovery of MK-8722: A Systemic, Direct Pan-Activator of AMP-Activated Protein Kinase. ACS Med. Chem. Lett. 2018, 9 (1), 39-44.
51. Xu, Y. Y.; Chen, F. L.; Ji, F.; Fei, H. D.; Xie, Y.; Wang, S. G., Activation of AMP-activated protein kinase by compound 991 protects osteoblasts from dexamethasone. Biochemical and biophysical research communications 2018, 495 (1), 1014-1021.
52. Yan, Y.; Zhou, X. E.; Novick, S. J.; Shaw, S. J.; Li, Y.; Brunzelle, J. S.; Hitoshi, Y.; Griffin, P. R.; Xu, H. E.; Melcher, K., Structures of AMP-activated protein kinase bound to novel pharmacological activators in phosphorylated, non-phosphorylated, and nucleotide-free states. J Biol Chem 2018.
53. Rajamohan, F.; Reyes, Allan R.; Frisbie, Richard K.; Hoth, Lise R.; Sahasrabudhe, P.; Magyar, R.; Landro, James A.; Withka, Jane M.; Caspers, Nicole L.; Calabrese, Matthew F.; Ward, J.; Kurumbail, Ravi G., Probing the enzyme kinetics, allosteric modulation and activation of α1- and α2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem. J. 2016, 473 (5), 581-592.
54. Rana, S.; Blowers, E. C.; Natarajan, A., Small Molecule Adenosine 5e 5hasrabudhe, P.; Magyar, R.; Landro, Ja(AMPK) Modulators and Human Diseases. Journal of medicinal chemistry 2015, 58 (1), 2-29.
55. Galic, S.; Fullerton, M. D.; Schertzer, J. D.; Sikkema, S.; Marcinko, K.; Walkley, C. R.; Izon, D.; Honeyman, J.; Chen, Z. P.; van Denderen, B. J.; Kemp, B. E.; Steinberg, G. R., Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Investig. 2011, 121 (12), 4903-15.
56. Myers, R. W.; Guan, H.-P.; Ehrhart, J.; Petrov, A.; Prahalada, S.; Tozzo, E.; Yang, X.; Kurtz, M. M.; Trujillo, M.; Gonzalez Trotter, D.; Feng, D.; Xu, S.; Eiermann, G.; Holahan, M. A.; Rubins, D.; Conarello, S.; Niu, X.; Souza, S. C.; Miller, C.; Liu, J.; Lu, K.; Feng, W.; Li, Y.; Painter, R. E.; Milligan, J. A.; He, H.; Liu, F.; Ogawa, A.; Wisniewski, D.; Rohm, R. J.; Wang, L.; Bunzel, M.; Qian, Y.; Zhu, W.; Wang, H.; Bennet, B.; LaFranco Scheuch, L.; Fernandez, G. E.; Li, C.; Klimas, M.; Zhou, G.; van Heek, M.; Biftu, T.; Weber, A.; Kelley, D. E.; Thornberry, N.; Erion, M. D.; Kemp, D. M.; Sebhat, I. K., Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Sci. 2017, 357 (6350), 507-511.
57. Cokorinos, E. C.; Delmore, J.; Reyes, A. R.; Albuquerque, B.; Kjøbsted, R.; Jørgensen, N. O.; Tran, J.-L.; Jatkar, A.; Cialdea, K.; Esquejo, R. M.; Meissen, J.; Calabrese, M. F.; Cordes, J.; Moccia, R.; Tess, D.; Salatto, C. T.; Coskran, T. M.; Opsahl, A. C.; Flynn, D.; Blatnik, M.; Li, W.; Kindt, E.; Foretz, M.; Viollet, B.; Ward, J.; Kurumbail, R. G.; Kalgutkar, A. S.; Wojtaszewski, J. F. P.; Cameron, K. O.; Miller, R. A., Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice. Cell metabolism 2017, 25 (5), 1147-1159.e10.
58. Cameron, K. O.; Kurumbail, R. G., Recent progress in the identification of adenosine monophosphate-activated protein kinase (AMPK) activators. Bioorganic & medicinal chemistry letters 2016, 26 (21), 5139-5148.
59. Palmieri, L.; Rastelli, G., αC helix displacement as a general approach for allosteric modulation of protein kinases. Drug discovery today 2013, 18 (7-8), 407-14.
60. Willows, R.; Sanders, M. J.; Xiao, B.; Patel, B. R.; Martin, S. R.; Read, J.; Wilson, J. R.; Hubbard, J.; Gamblin, S. J.; Carling, D., Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. The Biochemical journal 2017, 474 (17), 3059-3073.
61. Bultot, L.; Jensen, T. E.; Lai, Y. C.; Madsen, A. L.; Collodet, C.; Kviklyte, S.; Deak, M.; Yavari, A.; Foretz, M.; Ghaffari, S.; Bellahcene, M.; Ashrafian, H.; Rider, M. H.; Richter, E. A.; Sakamoto, K., Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Am J Physiol Endocrinol Metab 2016, 311 (4), E706-e719.
62. Ford, R. J.; Fullerton, M. D.; Pinkosky, S. L.; Day, E. A.; Scott, J. W.; Oakhill, J. S.; Bujak, A. L.; Smith, B. K.; Crane, J. D.; Blümer, R. M.; Marcinko, K.; Kemp, B. E.; Gerstein, H. C.; Steinberg, G. R., Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. The Biochemical journal 2015, 468 (1), 125-32.
63. Bortolin, R. C.; Vargas, A. R.; de Miranda Ramos, V.; Gasparotto, J.; Chaves, P. R.; Schnorr, C. E.; da Boit Martinello, K.; Silveira, A. K.; Gomes, H. M.; Rabelo, T. K.; Grunwald, M. S.; Ligabue-Braun, R.; Gelain, D. P.; Moreira, J. C. F., Guarana supplementation attenuated obesity, insulin resistance, and adipokines dysregulation induced by a standardized human Western diet via brown adipose tissue activation. Wiley 2019, 33 (5), 1394-1403.
64. Choi, J.; He, N.; Sung, M. K.; Yang, Y.; Yoon, S., Sanguinarine is an allosteric activator of AMP-activated protein kinase. Biochemical and biophysical research communications 2011, 413 (2), 259-63.
65. Novikov, F. N.; Chilov, G. G., Molecular docking: theoretical background, practical applications and perspectives. Mendeleev Commun. 2009, 19 (5), 237-242.
66. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S., Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of medicinal chemistry 2004, 47 (7), 1739-1749.
67. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267 (3), 727-48.
68. Jain, A. N., Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. Journal of computer-aided molecular design 2007, 21 (5), 281-306.
69. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19 (14), 1639-1662.
70. .
71. Walters, W. P.; Stahl, M. T.; Murcko, M. A., Virtual screening—an overview. Drug Discov.Today 1998, 3 (4), 160-178.
72. Kontoyianni, M., Docking and Virtual Screening in Drug Discovery. Methods Mol. Biol. 2017, 1647, 255-266.
73. Krammer, A.; Kirchhoff, P.; Jiang, X.; Venkatachalam, C.; Waldman, M., LigScore: A Novel Scoring Function for Predicting Binding Affinities. J. Mol. Graph. 2005, 23, 395-407.
74. de Azevedo, W. F.; Dias, R., Evaluation of ligand-binding affinity using polynomial empirical scoring functions. Bioorg. Med. Chem. 2008, 16 (20), 9378-9382.
75. Velec, H. F. G.; Gohlke, H.; Klebe, G., DrugScoreCSDKnowledge-Based Scoring Function Derived from Small Molecule Crystal Data with Superior Recognition Rate of Near-Native Ligand Poses and Better Affinity Prediction. Journal of medicinal chemistry 2005, 48 (20), 6296-6303.
76. Gohlke, H.; Hendlich, M.; Klebe, G., Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 2000, 295 (2), 337-56.
77. Warren, G. L.; Andrews, C. W.; Capelli, A. M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S., A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49 (20), 5912-31.
78. Enyedy, I. J.; Egan, W. J., Can we use docking and scoring for hit-to-lead optimization? J. Comput. Aided Mol. Des. 2008, 22 (3-4), 161-8.
79. Ye, W. L.; Shen, C.; Xiong, G. L.; Ding, J. J.; Lu, A. P.; Hou, T. J.; Cao, D. S., Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring. J. Chem. Inf. Model 2020, 60 (9), 4216-4230.
80. Oprea, T. I., Virtual Screening in Lead Discovery: A Viewpoint. Molecules. 2002 Jan 31;7(1):51-62. doi: 10.3390/70100051. eCollection 2002 Jan.: 2002.
81. Meng, X. Y.; Zhang, H. X.; Mezei, M.; Cui, M., Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7 (2), 146-57.
82. Batool, M.; Ahmad, B.; Choi, S., A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci. 2019, 20 (11), 2783.
83. Yang, C.; Chen, E. A.; Zhang, Y. J. M., Protein–Ligand Docking in the Machine-Learning Era. Mol. 2022, 27 (14), 4568.
84. Ferreira, L. G.; Dos Santos, R. N.; Oliva, G.; Andricopulo, A. D., Molecular docking and structure-based drug design strategies. Mol. 2015, 20 (7), 13384-421.
85. Li, Q.; Shah, S., Structure-Based Virtual Screening. Methods in molecular biology (Clifton, N.J.) 2017, 1558, 111-124.
86. Salsbury, F. R., Jr., Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current opinion in pharmacology 2010, 10 (6), 738-44.
87. Momany, F. A.; Rone, R., Validation of the general purpose QUANTA ®3.2/CHARMm® force field. 1992, 13 (7), 888-900.
88. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking11Edited by F. E. Cohen. J. Mol. Biol. 1997, 267 (3), 727-748.
89. Jones, G.; Willett, P.; Glen, R. C., Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of molecular biology 1995, 245 (1), 43-53.
90. James, L. C.; Tawfik, D. S., Conformational diversity and protein evolution--a 60-year-old hypothesis revisited. Trends Biochem Sci 2003, 28 (7), 361-8.
91. Krissinel, E. J. B., On the relationship between sequence and structure similarities in proteomics. J. Bioinform. 2007, 23 (6), 717-723.
92. Lu, Z.; Zhao, Z.; Fu, B., Efficient protein alignment algorithm for protein search. BMC Bioinform. 2010, 11 Suppl 1 (Suppl 1), S34.
93. Kufareva, I.; Abagyan, R., Methods of protein structure comparison. Methods in molecular biology (Clifton, N.J.) 2012, 857, 231-57.
94. Miertuš, S.; Scrocco, E.; Tomasi, J., Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55 (1), 117-129.
95. Cammi, R.; Tomasi, J., Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 1995, 16 (12), 1449-1458.
96. Laskowski, R. A.; Swindells, M. B., LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model 2011, 51 (10), 2778-2786.
97. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J., CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research 2018, 46 (W1), W363-W367.
98. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J., CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 2018, 46 (W1), W363-w367.
99. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M., LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection 1995, 8 (2), 127-134.
100. Laskowski, R. A.; Swindells, M. B., LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling 2011, 51 (10), 2778-2786.
101. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking11Edited by F. E. Cohen. Journal of molecular biology 1997, 267 (3), 727-748.
102. Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 2004, 3 (11), 935-949.
103. Wang, R.; Lu, Y.; Wang, S., Comparative evaluation of 11 scoring functions for molecular docking. Journal of medicinal chemistry 2003, 46 (12), 2287-2303.
104. Jones, G.; Willett, P.; Glen, R. C., Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of molecular biology 1995, 245 (1), 43-53.
105. Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P., Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 1997, 11 (5), 425-445.
106. Korb, O.; Stützle, T.; Exner, T. E., Empirical Scoring Functions for Advanced Protein−Ligand Docking with PLANTS. Journal of Chemical Information and Modeling 2009, 49 (1), 84-96.


(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *