|
1. Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B. B.; Stein, C.; Basit, A.; Chan, J. C. N.; Mbanya, J. C.; Pavkov, M. E.; Ramachandaran, A.; Wild, S. H.; James, S.; Herman, W. H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E. J.; Magliano, D. J., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022, 183, 109119. 2. Parving, H.-H., Initiation and progression of diabetic nephropathy. Mass Medical Soc: 1996; Vol. 335, pp 1682-1683. 3. Andersen, A. R.; Christiansen, J. S.; Andersen, J. K.; Kreiner, S.; Deckert, T., Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983, 25 (6), 496-501. 4. Tsai, E. B.; Sherry, N. A.; Palmer, J. P.; Herold, K. C.; for the, D. P. T. S. G., The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia 2006, 49 (2), 261-270. 5. Olsson, L.; Grill, V.; Midthjell, K.; Ahlbom, A.; Andersson, T.; Carlsson, S., Mortality in adult-onset autoimmune diabetes is associated with poor glycemic control: results from the HUNT Study. Diabetes care 2013, 36 (12), 3971-8. 6. Cheung, N.; Mitchell, P.; Wong, T. Y., Diabetic retinopathy. The Lancet 2010, 376 (9735), 124-136. 7. Rosenberger, D. C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R. D., Challenges of neuropathic pain: focus on diabetic neuropathy. Journal of neural transmission (Vienna, Austria : 1996) 2020, 127 (4), 589-624. 8. Rossing, K.; Christensen, P. K.; Hovind, P.; Tarnow, L.; Rossing, P.; Parving, H. H., Progression of nephropathy in type 2 diabetic patients. Kidney international 2004, 66 (4), 1596-605. 9. Dalla Vestra, M.; Saller, A.; Bortoloso, E.; Mauer, M.; Fioretto, P., Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes & metabolism 2000, 26 Suppl 4, 8-14. 10. Hovind, P.; Rossing, P.; Tarnow, L.; Smidt, U. M.; Parving, H.-H., Progression of diabetic nephropathy. Kidney international 2001, 59 (2), 702-709. 11. Kramer, H. J.; Nguyen, Q. D.; Curhan, G.; Hsu, C. Y., Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. Jama 2003, 289 (24), 3273-7. 12. Christensen, P. K.; Larsen, S.; Horn, T.; Olsen, S.; Parving, H. H., Renal function and structure in albuminuric type 2 diabetic patients without retinopathy. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2001, 16 (12), 2337-47. 13. Brugnara, L.; Novials, A.; Ortega, R.; De Rivas, B., Clinical characteristics, complications and management of patients with type 2 diabetes with and without diabetic kidney disease (DKD): A comparison of data from a clinical database. Endocrinologia, diabetes y nutricion 2018, 65 (1), 30-38. 14. Dugan, L. L.; You, Y.-H.; Ali, S. S.; Diamond-Stanic, M.; Miyamoto, S.; DeCleves, A.-E.; Andreyev, A.; Quach, T.; Ly, S.; Shekhtman, G.; Nguyen, W.; Chepetan, A.; Le, T. P.; Wang, L.; Xu, M.; Paik, K. P.; Fogo, A.; Viollet, B.; Murphy, A.; Brosius, F.; Naviaux, R. K.; Sharma, K., AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Investig. 2013, 123 (11), 4888-4899. 15. Rodríguez, C.; Sánchez, A.; Sáenz-Medina, J.; Muñoz, M.; Hernández, M.; López, M.; Rivera, L.; Contreras, C.; Prieto, D., Activation of AMP kinase ameliorates kidney vascular dysfunction, oxidative stress and inflammation in rodent models of obesity. Br. J. Pharmacol. 2021, 178 (20), 4085-4103. 16. Cameron, K. O.; Kung, D. W.; Kalgutkar, A. S.; Kurumbail, R. G.; Miller, R.; Salatto, C. T.; Ward, J.; Withka, J. M.; Bhattacharya, S. K.; Boehm, M.; Borzilleri, K. A.; Brown, J. A.; Calabrese, M.; Caspers, N. L.; Cokorinos, E.; Conn, E. L.; Dowling, M. S.; Edmonds, D. J.; Eng, H.; Fernando, D. P.; Frisbie, R.; Hepworth, D.; Landro, J.; Mao, Y.; Rajamohan, F.; Reyes, A. R.; Rose, C. R.; Ryder, T.; Shavnya, A.; Smith, A. C.; Tu, M.; Wolford, A. C.; Xiao, J., Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy. Journal of medicinal chemistry 2016, 59 (17), 8068-8081. 17. Su, L.; Yuan, H.; Zhang, H.; Wang, R.; Fu, K.; Yin, L.; Ren, Y.; Liu, H.; Fang, Q.; Wang, J.; Guo, D., PF-06409577 inhibits renal cyst progression by concurrently inhibiting the mTOR pathway and CFTR channel activity. FEBS open bio 2022, 12 (10), 1761-1770. 18. Salatto, C. T.; Miller, R. A.; Cameron, K. O.; Cokorinos, E.; Reyes, A.; Ward, J.; Calabrese, M. F.; Kurumbail, R. G.; Rajamohan, F.; Kalgutkar, A. S.; Tess, D. A.; Shavnya, A.; Genung, N. E.; Edmonds, D. J.; Jatkar, A.; Maciejewski, B. S.; Amaro, M.; Gandhok, H.; Monetti, M.; Cialdea, K.; Bollinger, E.; Kreeger, J. M.; Coskran, T. M.; Opsahl, A. C.; Boucher, G. G.; Birnbaum, M. J.; DaSilva-Jardine, P.; Rolph, T., Selective Activation of AMPK β1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy. The Journal of pharmacology and experimental therapeutics 2017, 361 (2), 303-311. 19. Stapleton, D.; Mitchelhill, K. I.; Gao, G.; Widmer, J.; Michell, B. J.; Teh, T.; House, C. M.; Fernandez, C. S.; Cox, T.; Witters, L. A.; Kemp, B. E., Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 1996, 271 (2), 611-4. 20. López-Novoa, J. M.; Rodríguez-Peña, A. B.; Ortiz, A.; Martínez-Salgado, C.; López Hernández, F. J., Etiopathology of chronic tubular, glomerular and renovascular nephropathies: clinical implications. Journal of translational medicine 2011, 9, 13. 21. Lin, C. H.; Chang, Y. C.; Chuang, L. M., Early detection of diabetic kidney disease: Present limitations and future perspectives. World journal of diabetes 2016, 7 (14), 290-301. 22. Declèves, A. E.; Mathew, A. V.; Cunard, R.; Sharma, K., AMPK mediates the initiation of kidney disease induced by a high-fat diet. Journal of the American Society of Nephrology : JASN 2011, 22 (10), 1846-55. 23. Salatto, C. T.; Miller, R. A.; Cameron, K. O.; Cokorinos, E.; Reyes, A.; Ward, J.; Calabrese, M. F.; Kurumbail, R. G.; Rajamohan, F.; Kalgutkar, A. S.; Tess, D. A.; Shavnya, A.; Genung, N. E.; Edmonds, D. J.; Jatkar, A.; Maciejewski, B. S.; Amaro, M.; Gandhok, H.; Monetti, M.; Cialdea, K.; Bollinger, E.; Kreeger, J. M.; Coskran, T. M.; Opsahl, A. C.; Boucher, G. G.; Birnbaum, M. J.; DaSilva-Jardine, P.; Rolph, T., Selective Activation of AMPK beta1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy. The Journal of pharmacology and experimental therapeutics 2017, 361 (2), 303-311. 24. Crute, B. E.; Seefeld, K.; Gamble, J.; Kemp, B. E.; Witters, L. A., Functional Domains of the α1 Catalytic Subunit of the AMP-activated Protein Kinase. J. Biol. Chem. 1998, 273 (52), 35347-35354. 25. Stein, S. C.; Woods, A.; Jones, N. A.; Davison, M. D.; Carling, D., The regulation of AMP-activated protein kinase by phosphorylation. J.Biol.Chem. 2000, 345 Pt 3 (Pt 3), 437-443. 26. Hawley, S. A.; Boudeau, J.; Reid, J. L.; Mustard, K. J.; Udd, L.; Makela, T. P.; Alessi, D. R.; Hardie, D. G., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of biology 2003, 2 (4), 28. 27. Woods, A.; Dickerson, K.; Heath, R.; Hong, S. P.; Momcilovic, M.; Johnstone, S. R.; Carlson, M.; Carling, D., Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell metabolism 2005, 2 (1), 21-33. 28. Pang, T.; Xiong, B.; Li, J.-Y.; Qiu, B.-Y.; Jin, G.-Z.; Shen, J.-K.; Li, J., Conserved α-Helix Acts as Autoinhibitory Sequence in AMP-activated Protein Kinase α Subunits. J. Biol. Chem. 2007, 282 (1), 495-506. 29. Xiao, B.; Sanders, M. J.; Underwood, E.; Heath, R.; Mayer, F. V.; Carmena, D.; Jing, C.; Walker, P. A.; Eccleston, J. F.; Haire, L. F.; Saiu, P.; Howell, S. A.; Aasland, R.; Martin, S. R.; Carling, D.; Gamblin, S. J., Structure of mammalian AMPK and its regulation by ADP. Nature 2011, 472 (7342), 230-233. 30. Chen, L.; Xin, F.-J.; Wang, J.; Hu, J.; Zhang, Y.-Y.; Wan, S.; Cao, L.-S.; Lu, C.; Li, P.; Yan, S. F.; Neumann, D.; Schlattner, U.; Xia, B.; Wang, Z.-X.; Wu, J.-W., Conserved regulatory elements in AMPK. Nature 2013, 498 (7453), E8-E10. 31. Xiao, B.; Sanders, M. J.; Carmena, D.; Bright, N. J.; Haire, L. F.; Underwood, E.; Patel, B. R.; Heath, R. B.; Walker, P. A.; Hallen, S.; Giordanetto, F.; Martin, S. R.; Carling, D.; Gamblin, S. J., Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 2013, 4, 3017. 32. Dyck, J. R. B.; Gao, G.; Widmer, J.; Stapleton, D.; Fernandez, C. S.; Kemp, B. E.; Witters, L. A., Regulation of 5f 5, P. A.; Hallenotein Kinase Activity by the Noncatalytic β and γ Subunits. J. Biol. Chem. 1996, 271 (30), 17798-17803. 33. Iseli, T. J.; Walter, M.; van Denderen, B. J. W.; Katsis, F.; Witters, L. A.; Kemp, B. E.; Michell, B. J.; Stapleton, D., AMP-activated Protein Kinase β Subunit Tethers α and γ Subunits via Its C-terminal Sequence (186–270). J. Biol. Chem. 2005, 280 (14), 13395-13400. 34. Oakhill, J. S.; Chen, Z.-P.; Scott, J. W.; Steel, R.; Castelli, L. A.; Ling, N.; Macaulay, S. L.; Kemp, B. E., β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). PNAS 2010, 107 (45), 19237-19241. 35. Polekhina, G.; Gupta, A.; Michell, B. J.; van Denderen, B.; Murthy, S.; Feil, S. C.; Jennings, I. G.; Campbell, D. J.; Witters, L. A.; Parker, M. W.; Kemp, B. E.; Stapleton, D., AMPK beta subunit targets metabolic stress sensing to glycogen. Current biology : CB 2003, 13 (10), 867-71. 36. Iseli, T. J.; Oakhill, J. S.; Bailey, M. F.; Wee, S.; Walter, M.; van Denderen, B. J.; Castelli, L. A.; Katsis, F.; Witters, L. A.; Stapleton, D.; Macaulay, S. L.; Michell, B. J.; Kemp, B. E., AMP-activated protein kinase subunit interactions: beta1:gamma1 association requires beta1 Thr-263 and Tyr-267. J. Biol. Chem. 2008, 283 (8), 4799-807. 37. Sanders, M. J.; Ali, Z. S.; Hegarty, B. D.; Heath, R.; Snowden, M. A.; Carling, D., Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J. Biol. Chem. 2007, 282 (45), 32539-48. 38. Viana, R.; Towler, M. C.; Pan, D. A.; Carling, D.; Viollet, B.; Hardie, D. G.; Sanz, P., A conserved sequence immediately N-terminal to the Bateman domains in AMP-activated protein kinase gamma subunits is required for the interaction with the beta subunits. J. Biol. Chem. 2007, 282 (22), 16117-16125. 39. Cheung, P. C.; Salt, I. P.; Davies, S. P.; Hardie, D. G.; Carling, D., Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 2000, 346 Pt 3 (Pt 3), 659-669. 40. Bateman, A., The structure of a domain common to archaebacteria and the homocystinuria disease protein. TIBS 1997, 22 (1), 12-13. 41. Xiao, B.; Heath, R.; Saiu, P.; Leiper, F. C.; Leone, P.; Jing, C.; Walker, P. A.; Haire, L.; Eccleston, J. F.; Davis, C. T.; Martin, S. R.; Carling, D.; Gamblin, S. J., Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 2007, 449 (7161), 496-500. 42. Sabina, R. L.; Patterson, D.; Holmes, E. W., 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. JBC 1985, 260 (10), 6107-6114. 43. Zhang, Y.-L.; Guo, H.; Zhang, C.-S.; Lin, S.-Y.; Yin, Z.; Peng, Y.; Luo, H.; Shi, Y.; Lian, G.; Zhang, C. J. C. m., AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell. Metab. 2013, 18 (4), 546-555. 44. Cool, B.; Zinker, B.; Chiou, W.; Kifle, L.; Cao, N.; Perham, M.; Dickinson, R.; Adler, A.; Gagne, G.; Iyengar, R.; Zhao, G.; Marsh, K.; Kym, P.; Jung, P.; Camp, H. S.; Frevert, E., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell metabolism 2006, 3 (6), 403-16. 45. Scott, J. W.; Ling, N.; Issa, S. M.; Dite, T. A.; O'Brien, M. T.; Chen, Z. P.; Galic, S.; Langendorf, C. G.; Steinberg, G. R.; Kemp, B. E.; Oakhill, J. S., Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Chemistry & biology 2014, 21 (5), 619-27. 46. Ducommun, S.; Ford, R. J.; Bultot, L.; Deak, M.; Bertrand, L.; Kemp, B. E.; Steinberg, G. R.; Sakamoto, K., Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. Am J Physiol Endocrinol Metab 2014, 306 (6), E688-96. 47. Guigas, B.; Sakamoto, K.; Taleux, N.; Reyna, S. M.; Musi, N.; Viollet, B.; Hue, L., Beyond AICA riboside: in search of new specific AMP-activated protein kinase activators. IUBMB life 2009, 61 (1), 18-26. 48. Calabrese, Matthew F.; Rajamohan, F.; Harris, Melissa S.; Caspers, Nicole L.; Magyar, R.; Withka, Jane M.; Wang, H.; Borzilleri, Kris A.; Sahasrabudhe, Parag V.; Hoth, Lise R.; Geoghegan, Kieran F.; Han, S.; Brown, J.; Subashi, Timothy A.; Reyes, Allan R.; Frisbie, Richard K.; Ward, J.; Miller, Russell A.; Landro, James A.; Londregan, Allyn T.; Carpino, Philip A.; Cabral, S.; Smith, Aaron C.; Conn, Edward L.; Cameron, Kimberly O.; Qiu, X.; Kurumbail, Ravi G., Structural Basis for AMPK Activation: Natural and Synthetic Ligands Regulate Kinase Activity from Opposite Poles by Different Molecular Mechanisms. Structure 2014, 22 (8), 1161-1172. 49. Zadra, G.; Photopoulos, C.; Tyekucheva, S.; Heidari, P.; Weng, Q. P.; Fedele, G.; Liu, H.; Scaglia, N.; Priolo, C.; Sicinska, E.; Mahmood, U.; Signoretti, S.; Birnberg, N.; Loda, M., A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol. Med. 2014, 6 (4), 519-38. 50. Feng, D.; Biftu, T.; Romero, F. A.; Kekec, A.; Dropinski, J.; Kassick, A.; Xu, S.; Kurtz, M. M.; Gollapudi, A.; Shao, Q.; Yang, X.; Lu, K.; Zhou, G.; Kemp, D.; Myers, R. W.; Guan, H.-P.; Trujillo, M. E.; Li, C.; Weber, A.; Sebhat, I. K., Discovery of MK-8722: A Systemic, Direct Pan-Activator of AMP-Activated Protein Kinase. ACS Med. Chem. Lett. 2018, 9 (1), 39-44. 51. Xu, Y. Y.; Chen, F. L.; Ji, F.; Fei, H. D.; Xie, Y.; Wang, S. G., Activation of AMP-activated protein kinase by compound 991 protects osteoblasts from dexamethasone. Biochemical and biophysical research communications 2018, 495 (1), 1014-1021. 52. Yan, Y.; Zhou, X. E.; Novick, S. J.; Shaw, S. J.; Li, Y.; Brunzelle, J. S.; Hitoshi, Y.; Griffin, P. R.; Xu, H. E.; Melcher, K., Structures of AMP-activated protein kinase bound to novel pharmacological activators in phosphorylated, non-phosphorylated, and nucleotide-free states. J Biol Chem 2018. 53. Rajamohan, F.; Reyes, Allan R.; Frisbie, Richard K.; Hoth, Lise R.; Sahasrabudhe, P.; Magyar, R.; Landro, James A.; Withka, Jane M.; Caspers, Nicole L.; Calabrese, Matthew F.; Ward, J.; Kurumbail, Ravi G., Probing the enzyme kinetics, allosteric modulation and activation of α1- and α2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem. J. 2016, 473 (5), 581-592. 54. Rana, S.; Blowers, E. C.; Natarajan, A., Small Molecule Adenosine 5e 5hasrabudhe, P.; Magyar, R.; Landro, Ja(AMPK) Modulators and Human Diseases. Journal of medicinal chemistry 2015, 58 (1), 2-29. 55. Galic, S.; Fullerton, M. D.; Schertzer, J. D.; Sikkema, S.; Marcinko, K.; Walkley, C. R.; Izon, D.; Honeyman, J.; Chen, Z. P.; van Denderen, B. J.; Kemp, B. E.; Steinberg, G. R., Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Investig. 2011, 121 (12), 4903-15. 56. Myers, R. W.; Guan, H.-P.; Ehrhart, J.; Petrov, A.; Prahalada, S.; Tozzo, E.; Yang, X.; Kurtz, M. M.; Trujillo, M.; Gonzalez Trotter, D.; Feng, D.; Xu, S.; Eiermann, G.; Holahan, M. A.; Rubins, D.; Conarello, S.; Niu, X.; Souza, S. C.; Miller, C.; Liu, J.; Lu, K.; Feng, W.; Li, Y.; Painter, R. E.; Milligan, J. A.; He, H.; Liu, F.; Ogawa, A.; Wisniewski, D.; Rohm, R. J.; Wang, L.; Bunzel, M.; Qian, Y.; Zhu, W.; Wang, H.; Bennet, B.; LaFranco Scheuch, L.; Fernandez, G. E.; Li, C.; Klimas, M.; Zhou, G.; van Heek, M.; Biftu, T.; Weber, A.; Kelley, D. E.; Thornberry, N.; Erion, M. D.; Kemp, D. M.; Sebhat, I. K., Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Sci. 2017, 357 (6350), 507-511. 57. Cokorinos, E. C.; Delmore, J.; Reyes, A. R.; Albuquerque, B.; Kjøbsted, R.; Jørgensen, N. O.; Tran, J.-L.; Jatkar, A.; Cialdea, K.; Esquejo, R. M.; Meissen, J.; Calabrese, M. F.; Cordes, J.; Moccia, R.; Tess, D.; Salatto, C. T.; Coskran, T. M.; Opsahl, A. C.; Flynn, D.; Blatnik, M.; Li, W.; Kindt, E.; Foretz, M.; Viollet, B.; Ward, J.; Kurumbail, R. G.; Kalgutkar, A. S.; Wojtaszewski, J. F. P.; Cameron, K. O.; Miller, R. A., Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice. Cell metabolism 2017, 25 (5), 1147-1159.e10. 58. Cameron, K. O.; Kurumbail, R. G., Recent progress in the identification of adenosine monophosphate-activated protein kinase (AMPK) activators. Bioorganic & medicinal chemistry letters 2016, 26 (21), 5139-5148. 59. Palmieri, L.; Rastelli, G., αC helix displacement as a general approach for allosteric modulation of protein kinases. Drug discovery today 2013, 18 (7-8), 407-14. 60. Willows, R.; Sanders, M. J.; Xiao, B.; Patel, B. R.; Martin, S. R.; Read, J.; Wilson, J. R.; Hubbard, J.; Gamblin, S. J.; Carling, D., Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. The Biochemical journal 2017, 474 (17), 3059-3073. 61. Bultot, L.; Jensen, T. E.; Lai, Y. C.; Madsen, A. L.; Collodet, C.; Kviklyte, S.; Deak, M.; Yavari, A.; Foretz, M.; Ghaffari, S.; Bellahcene, M.; Ashrafian, H.; Rider, M. H.; Richter, E. A.; Sakamoto, K., Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Am J Physiol Endocrinol Metab 2016, 311 (4), E706-e719. 62. Ford, R. J.; Fullerton, M. D.; Pinkosky, S. L.; Day, E. A.; Scott, J. W.; Oakhill, J. S.; Bujak, A. L.; Smith, B. K.; Crane, J. D.; Blümer, R. M.; Marcinko, K.; Kemp, B. E.; Gerstein, H. C.; Steinberg, G. R., Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. The Biochemical journal 2015, 468 (1), 125-32. 63. Bortolin, R. C.; Vargas, A. R.; de Miranda Ramos, V.; Gasparotto, J.; Chaves, P. R.; Schnorr, C. E.; da Boit Martinello, K.; Silveira, A. K.; Gomes, H. M.; Rabelo, T. K.; Grunwald, M. S.; Ligabue-Braun, R.; Gelain, D. P.; Moreira, J. C. F., Guarana supplementation attenuated obesity, insulin resistance, and adipokines dysregulation induced by a standardized human Western diet via brown adipose tissue activation. Wiley 2019, 33 (5), 1394-1403. 64. Choi, J.; He, N.; Sung, M. K.; Yang, Y.; Yoon, S., Sanguinarine is an allosteric activator of AMP-activated protein kinase. Biochemical and biophysical research communications 2011, 413 (2), 259-63. 65. Novikov, F. N.; Chilov, G. G., Molecular docking: theoretical background, practical applications and perspectives. Mendeleev Commun. 2009, 19 (5), 237-242. 66. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S., Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of medicinal chemistry 2004, 47 (7), 1739-1749. 67. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267 (3), 727-48. 68. Jain, A. N., Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. Journal of computer-aided molecular design 2007, 21 (5), 281-306. 69. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19 (14), 1639-1662. 70. . 71. Walters, W. P.; Stahl, M. T.; Murcko, M. A., Virtual screening—an overview. Drug Discov.Today 1998, 3 (4), 160-178. 72. Kontoyianni, M., Docking and Virtual Screening in Drug Discovery. Methods Mol. Biol. 2017, 1647, 255-266. 73. Krammer, A.; Kirchhoff, P.; Jiang, X.; Venkatachalam, C.; Waldman, M., LigScore: A Novel Scoring Function for Predicting Binding Affinities. J. Mol. Graph. 2005, 23, 395-407. 74. de Azevedo, W. F.; Dias, R., Evaluation of ligand-binding affinity using polynomial empirical scoring functions. Bioorg. Med. Chem. 2008, 16 (20), 9378-9382. 75. Velec, H. F. G.; Gohlke, H.; Klebe, G., DrugScoreCSDKnowledge-Based Scoring Function Derived from Small Molecule Crystal Data with Superior Recognition Rate of Near-Native Ligand Poses and Better Affinity Prediction. Journal of medicinal chemistry 2005, 48 (20), 6296-6303. 76. Gohlke, H.; Hendlich, M.; Klebe, G., Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 2000, 295 (2), 337-56. 77. Warren, G. L.; Andrews, C. W.; Capelli, A. M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S., A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49 (20), 5912-31. 78. Enyedy, I. J.; Egan, W. J., Can we use docking and scoring for hit-to-lead optimization? J. Comput. Aided Mol. Des. 2008, 22 (3-4), 161-8. 79. Ye, W. L.; Shen, C.; Xiong, G. L.; Ding, J. J.; Lu, A. P.; Hou, T. J.; Cao, D. S., Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring. J. Chem. Inf. Model 2020, 60 (9), 4216-4230. 80. Oprea, T. I., Virtual Screening in Lead Discovery: A Viewpoint. Molecules. 2002 Jan 31;7(1):51-62. doi: 10.3390/70100051. eCollection 2002 Jan.: 2002. 81. Meng, X. Y.; Zhang, H. X.; Mezei, M.; Cui, M., Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7 (2), 146-57. 82. Batool, M.; Ahmad, B.; Choi, S., A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci. 2019, 20 (11), 2783. 83. Yang, C.; Chen, E. A.; Zhang, Y. J. M., Protein–Ligand Docking in the Machine-Learning Era. Mol. 2022, 27 (14), 4568. 84. Ferreira, L. G.; Dos Santos, R. N.; Oliva, G.; Andricopulo, A. D., Molecular docking and structure-based drug design strategies. Mol. 2015, 20 (7), 13384-421. 85. Li, Q.; Shah, S., Structure-Based Virtual Screening. Methods in molecular biology (Clifton, N.J.) 2017, 1558, 111-124. 86. Salsbury, F. R., Jr., Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current opinion in pharmacology 2010, 10 (6), 738-44. 87. Momany, F. A.; Rone, R., Validation of the general purpose QUANTA ®3.2/CHARMm® force field. 1992, 13 (7), 888-900. 88. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking11Edited by F. E. Cohen. J. Mol. Biol. 1997, 267 (3), 727-748. 89. Jones, G.; Willett, P.; Glen, R. C., Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of molecular biology 1995, 245 (1), 43-53. 90. James, L. C.; Tawfik, D. S., Conformational diversity and protein evolution--a 60-year-old hypothesis revisited. Trends Biochem Sci 2003, 28 (7), 361-8. 91. Krissinel, E. J. B., On the relationship between sequence and structure similarities in proteomics. J. Bioinform. 2007, 23 (6), 717-723. 92. Lu, Z.; Zhao, Z.; Fu, B., Efficient protein alignment algorithm for protein search. BMC Bioinform. 2010, 11 Suppl 1 (Suppl 1), S34. 93. Kufareva, I.; Abagyan, R., Methods of protein structure comparison. Methods in molecular biology (Clifton, N.J.) 2012, 857, 231-57. 94. Miertuš, S.; Scrocco, E.; Tomasi, J., Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55 (1), 117-129. 95. Cammi, R.; Tomasi, J., Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 1995, 16 (12), 1449-1458. 96. Laskowski, R. A.; Swindells, M. B., LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model 2011, 51 (10), 2778-2786. 97. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J., CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research 2018, 46 (W1), W363-W367. 98. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J., CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 2018, 46 (W1), W363-w367. 99. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M., LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection 1995, 8 (2), 127-134. 100. Laskowski, R. A.; Swindells, M. B., LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling 2011, 51 (10), 2778-2786. 101. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking11Edited by F. E. Cohen. Journal of molecular biology 1997, 267 (3), 727-748. 102. Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 2004, 3 (11), 935-949. 103. Wang, R.; Lu, Y.; Wang, S., Comparative evaluation of 11 scoring functions for molecular docking. Journal of medicinal chemistry 2003, 46 (12), 2287-2303. 104. Jones, G.; Willett, P.; Glen, R. C., Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of molecular biology 1995, 245 (1), 43-53. 105. Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P., Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 1997, 11 (5), 425-445. 106. Korb, O.; Stützle, T.; Exner, T. E., Empirical Scoring Functions for Advanced Protein−Ligand Docking with PLANTS. Journal of Chemical Information and Modeling 2009, 49 (1), 84-96.
|