帳號:guest(3.144.232.206)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Ymelda Agatha Christy Manurung
作者(英文):Ymelda Agatha Christy Manurung
論文名稱:ERα對PKM2 FASN在癌症中表現量影響之分析
論文名稱(英文):The regulatory role of Estrogen Receptor α in the expression of PKM2 and FASN in cancer cells
指導教授:袁大鈞
指導教授(英文):Ta-Chun Yuan
口試委員:蘇玟珉
彭致文
口試委員(英文):Wen-Min Su
Zhi-Wen Peng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610713010
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:35
關鍵詞(英文):Estrogen Receptor αPKM2FASNCancer cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
Estrogen receptor alpha (ERα) is a hormone receptor that functions as a ligand-activated transcription factor to regulate the expression of a wide variety of estrogen-responsive genes in target cells. Dysregulated ERα expression or activity is closely linked to the malignant transformation of hormone-regulated cells. However, it is unknown whether the changes in ERα expression or activity impact the function of metabolic enzymes in cancer cells. In this study, we focus on the role of ERα modulating PKM2 and FASN expression in cancer cells and the impacts of their expression on cell proliferation. Our data clearly showed that knockdown of ERα led to decreases in the expression of PKM2 and FASN in breast cancer MCF-7 cells, prostate cancer PC-3 cells, and oral cancer OECM-1 cells. Moreover, the decrease in PKM2 or FASN expression was correlated with reduced cell proliferation in ERα-knockdown cells. Treatment of 17β-estradiol (E2) upregulated the expression of PKM2 and FASN in cancer cells and promoted their proliferation, while the E2-promoted effects on PKM2 or FASN expression as well as cell proliferation could be abolished by treatment with tamoxifen. Interestingly, knockdown of FASN or PKM2 expression in cancer cells caused decreased ERα expression and impacted each other’s expression and cell proliferation. In summary, our data suggested that the reciprocal regulation of expression among ERα, PKM2, and FASN impacted the proliferation of cancer cells.
1. Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M (1985). Cloning of the human estrogen receptor cDNA. Proc. Natl. Acad. Sci. U.S.A. 82 (23): 7889–93.
2. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (March 1986). "Sequence and expression of human estrogen receptor complementary DNA". Science. 231 (4742): 1150–4.
3. Salmeron-Hernandez, A., et al. (2019). "BCAS2 Enhances Carcinogenic Effects of Estrogen Receptor Alpha in Breast Cancer Cells." Int J Mol Sci 20(4).
4. Da, J., et al. (2015). "Estrogen Receptor Alpha (ERalpha)-Associated Fibroblasts Promote Cell Growth in Prostate Cancer." Cell Biochem Biophys 73(3): 793-798.
5. Lund-Iversen, M., et al. (2018). "Expression of Estrogen Receptor-alpha and Survival in Advanced-stage Non-small Cell Lung Cancer." Anticancer Res 38(4): 2261-2269.
6. Yu, E., et al. (2019). "Discovery of novel natural compound inhibitors targeting estrogen receptor alpha by an integrated virtual screening strategy." J Mol Model 25(9): 278.
7. Brandenberger, A. W., et al. (1998). "Estrogen receptor alpha (ER-alpha) and beta (ER-beta) mRNAs in normal ovary, ovarian serous cystadenocarcinoma and ovarian cancer cell lines: down-regulation of ER-beta in neoplastic tissues." J Clin Endocrinol Metab 83(3): 1025-1028.
8. Ge, H., et al. (2018). "Prognostic value of estrogen receptor alpha and estrogen receptor beta in gastric cancer based on a meta-analysis and The Cancer Genome Atlas (TCGA) datasets." Int J Surg 53: 24-31.
9. Frasor, J., et al. (2003). "Response-specific and ligand dose-dependent modulation of estrogen receptor (ER) alpha activity by ERbeta in the uterus." Endocrinology 144(7): 3159-3166.

10. Stossi, F., et al. (2004). "Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) alpha or ERbeta in human osteosarcoma cells: distinct and common target genes for these receptors." Endocrinology 145(7): 3473-3486.
11. Glass, C.K.; Rosenfeld, M.G. (2000). “The coregulator exchange in transcriptional functions of nuclear receptors”. Genes Dev. 14, 121–141.
12. McKenna, N.J.; O’Malley, B.W. (2002). “Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators.” Cell, 108, 465–474.
13. Couse, J. F., et al. (1997). "Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse." Endocrinology 138(11): 4613-4621.
14. World Health Organization. "Cancer". 12 September 2018. Retrieved 19 December 2018.
15. Chin D, Boyle GM, Porceddu S, Theile DR, Parsons PG, Coman WB. (2006). “Head and neck cancer: past, present and future.” Expert Rev Anticancer Ther 6:1111–8
16. Preventing and Controlling Oral and Pharyngeal Cancer. (1998). Recommendations from a National Strategic Planning Conference. MMWR Recommend Rep: Morbid Mort Weekly Rep Recommend Rep/Cent Dis Control; 47:1–12.
17. Chiang WF, Yen CY, Lin CN, et al. (2006). “Up-regulation of a serine-threonine kinase proto-oncogene Pim-1 in oral squamous cell carcinoma.” Int J Oral Maxillofac Surg.; 54: 740–5.
18. Chang, Y. L., et al. (2014). "Regulation of estrogen receptor alpha function in oral squamous cell carcinoma cells by FAK signaling." Endocr Relat Cancer 21(4): 555-565.
19. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H (2001). “Phosphatidylinositol 3-kinase/AKTmediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance.” J Biol Chem 276(13):9817–9824.
20. O’Donnell RK, Kupferman M, Wei SJ, et al. (2005). “Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity.” Oncogene. 24: 1244–51.
21. Brinkman BM, Wong DT. (2006). “Disease mechanism and biomarkers of oral squamous cell carcinoma.” Curr Opin Oncol; 18: 228–33.
22. Chiang WF, Liu SY, Fang LY, et al. (2008). “Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma.” Oral Oncol; 44: 325–34.
23. Morris KV, Rossi JJ. (2006). “Lentivirus-mediated RNA interference therapy for human immunodeficiency virus type 1 infection.” Hum Gene Ther; 17: 479–86.
24. Marur S., Forastiere A.A. (2008). “Head and Neck Cancer: Changing Epidemiology, Diagnosis, and Treatment.” Mayo Clin Proc., 83: 489–501.
25. Murphy, L. C., et al. (2009). "The relevance of phosphorylated forms of estrogen receptor in human breast cancer in vivo." J Steroid Biochem Mol Biol 114(1-2): 90-95.
26. C. Osborne, R. Schiff. (2005). “Estrogen-receptor biology: continuing progress and therapeutic implications.” J. Clin. Oncol. 23 1616–1622.
27. D. Lannigan. (2003). “Estrogen receptor phosphorylation.” Steroids 68 (1) 1–9.
28. McKenna, N.J.; O’Malley, B.W. (2002). “Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators.” Cell, 108, 465–474.
29. Liu H., Liu J.Y., Wu X., Zhang J. T., (2010). “Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker.” Int J Biochem Mol Biol 1(1):69–89.
30. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, udove J, ullrich A, et al. (1989). “Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.” Science 244: 707-712.
31. Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD and Pasternack GR. (1994). “Fatty acid synthesis: a potential selective target for antineoplastic therapy.” Proc Natl Acad Sci USA 91: 6379-6383.
32. Klaus S. (2004). “Adipose tissue as a regulator of energy balance.” Curr Drug Targets. 5:241–250.
33. Andrade B., Leo´n JE, Carlos R., Delgado-Azan˜ ero W., A Mosqueda-Taylor , Graner E., de Almeida O.P. (2011). “Expression of fatty acid synthase (FASN) in oral nevi and melanoma.” Oral Diseases. 17, 808–812.
34. Lupu R, Menendez JA. (2006). “Targeting fatty acid synthase in breast and endometrial cancer: an alternative to selective estrogen receptor modulators.” Endocrinology. 147(9):4056–66.
35. Bartolacci C, Padanad M, Andreani C, et al. (2017). “Fatty acid synthase is a therapeutic target in mutant KRAS lung Cancer.” J Thorac Oncol. 12(8): S1538.
36. Zaytseva YY, Rychahou PG, Gulhati P, et al. (2012). “Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer.” Cancer Res. 72(6):1504–17.
37. Wang YY, Kuhajda FP, Li JN, et al. (2001). “Fatty acid synthase (FAS) expression in human breast cancer cell culture supernatants and in breast cancer patients.” Cancer Lett. 167(1):99–104.
38. Gelebart P, Zak Z, Anand M, et al. (2012). “Blockade of fatty acid synthase triggers significant apoptosis in mantle cell lymphoma.” PLoS One. 7(4): e33738.
39. Bhatt AP, Jacobs SR, Freemerman AJ, et al. (2012). “Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma.” Proc Natl Acad Sci. 109(29):11818–23.
40. Di Vizio D, Adam RM, Kim J, et al. (2008). “Caveolin-1 interacts with a lipid raftassociated population of fatty acid synthase.” Cell Cycle. 7(14): 2257–67.
41. Kuhajda FP, Jenner K, Wood FD, et al. (1994). “Fatty acid synthesis: a potential selective target for antineoplastic therapy.” Proc Natl Acad Sci. 91(14): 6379–83.
42. Cai Y, Wang J, Zhang L, et al. (2015). “Expressions of fatty acid synthase and HER2 are correlated with poor prognosis of ovarian cancer.” Med Oncol. 32(1): 391.
43. Sunami Y, Rebelo A, Kleeff J. (2017). “Lipid metabolism and lipid droplets in pancreatic Cancer and stellate cells.” Cancers. 10(1):3.
44. Buckley D, Duke G, Heuer TS, et al. (2017). “Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target.” [J]. Pharmacol Ther. 177: 23-31.
45. Khiewkamrop P, Phunsomboon P, Richert L, et al. (2018). “Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells.” Cancer Cell Int. 18(1): 46.
46. Chang L, Tian X, Lu Y, et al. (2014). “Alpha-2-glycoprotein 1(AZGP1) regulates biological behaviors of LoVo cells by down-regulating mTOR signaling pathway and endogenous fatty acid synthesis.” PLoS One. 9(6): e99254.
47. Chang L., Fang S., Chen Y., Yang Z., Yuan Y., Zhang J., Ye L., Gu W., (2019). “Inhibition of FASN suppresses the malignant biological behavior of non-small cell lung cancer cells via deregulating glucose metabolism and AKT/ERK pathway. Lipids in Health and Disease.” 18:118.
48. Majumder, P. K. et al. (2004). “mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways”. Nature Med. 10, 594–601.
49. Altenberg, B. & Greulich, K. O. (2004). “Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes”. Genomics 84, 1014–1020.
50. Hsu PP, Sabatini DM. (2008). “Cell.” ;134:703.
51. Deberardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. (2008). “Cell Metab”. 7:11.
52. Yang, W.; Lu, Z. Nuclear PKM2 regulates the Warburg effect. Cell Cycle 2013, 12, 3154–3158.
53. Jurica, M. S. et al. (1998). “The allosteric regulation of pyruvate kinase by fructose-1,6 bisphosphate”. Structure 6, 195–210.
54. Imamura K, Tanaka T. (1982). “Pyruvate kinase isozymes from rat. Methods Enzymol” ;90 Pt E:150-65.
55. Mazurek S. (2011). “Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells”. Int J Biochem Cell Biol;43:969-80.
56. Christofk, H. R., et al. (2008). "The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth." Nature 452(7184): 230-233.
57. Luo, W. and G. L. Semenza (2012). "Emerging roles of PKM2 in cell metabolism and cancer progression." Trends Endocrinol Metab 23(11): 560-566.
58. Kim, J.W. et al. (2004). “Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays”. Mol. Cell. Biol. 24, 5923–5936.
59. Smith S. (1994). “The animal fatty acid synthase: one gene, one polypeptide, seven enzymes”. Fed Am Soc Exp Biol J 8:1248–1259.
60. Asturias FJ, Chadick JZ, Cheung IK, Stark H, Witkowski A, Joshi AK, Smith S. (2005). “Structure and molecular organization of mammalian fatty acid synthase”. Nat Struct Mol Biol 12:225–232.
61. Quijano, C. et al. (2012). “Oncogene-induced senescence results in marked metabolic and bioenergetic alterations”. Cell Cycle 11, 1383–1392.
62. Weiss L, Hoffmann GE, Schreiber R, Andres H, Fuchs E, Körber E, et al. (1986). “Fatty-acid biosynthesis in man, a pathway of organ distribution of fatty-acid synthase”. Biol Chem Hoppe Seyler.;367(9):905-12.
63. Flavin R, Peluso S, Nguyen PL, Loda M. (2010). “Fatty acid synthase as a potential therapeutic target in cancer”. Future Oncol; 6: 551–62.
64. Little JL, Kridel SJ. (2008). “Fatty acid synthase activity in tumor cells”. Subcell Biochem; 49: 169–94.
65. Tao, T., et al. (2019). "Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis." J Cell Physiol 234(3): 3088-3104.
66. Anandappa, S. Y., et al. (2000). “Variant estrogen receptor alpha mRNAs in human breast cancer specimens”. Int J Cancer 88(2): 209-216.
67. Pisolato, R., Lombardi, A. P. G., Vicente, C. M., Lucas, T. F. G., Lazari, M. F. M., & Porto, C. S. (2016). “Expression and regulation of the estrogen receptors in PC-3 human prostate cancer cells”. Steroids, 107, 74–86.
68. Song RX, Santen RJ. (2006). “Membrane initiated estrogen signaling in breast cancer”. Biol.Reprod. 75(1):9-16.
69. Hammes SR, Levin ER. (2011). “Minireview: Recent advances in extranuclear steroid receptor actions”. Endocrinology. 152(12):4489-95.
70. Greene, G. L. et al. (1986). “Sequence and expression of human estrogen receptor complementary DNA”. Science. 231, 1150–1154.
71. Wong, S. C., Chan, J. K., Lee, K. C. & Hsiao, W. L. (2001). “Differential expression of p16/p21/p27 and cyclin D1/D3, and their relationships to cell proliferation, apoptosis, and tumour progression in invasive ductal carcinoma of the breast”. J. Pathol. 194, 35–42.
72. Menendez, J. A., & Lupu, R. (2017). Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis. 6(2), e299–e299.
73. Tao, T., Su, Q., Xu, S., Deng, J., Zhou, S., Zhuang, Y., Yang, X. (2018). Downregulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis. Journal of Cellular Physiology. 10.1002/jcp.27129.
74. Christofk H, Heiden MV, Harris M, Ramanathan A, Gerszten R. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–3.
75. Zhang, Z., Deng, X., Liu, Y., Liu, Y., Sun, L., & Chen, F. (2019). PKM2, function and expression and regulation. Cell & Bioscience. 9(1).10.1186/s13578-019-0317-8.
76. Ye, Q., Chung, L. W. ., Li, S., & Zhau, H. E. (2000). Identification of a novel FAS/ER-α fusion transcript expressed in human cancer cells. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1493(3): 373–377.
77. Lu, Y., et al. (2020). "Estrogen activates pyruvate kinase M2 and increases the growth of TSC2-deficient cells." PLoS One 15(2): e0228894.
78. Salama, S. A., et al. (2014). "Estradiol-17beta upregulates pyruvate kinase M2 expression to coactivate estrogen receptor-alpha and to integrate metabolic reprogramming with the mitogenic response in endometrial cells." J Clin Endocrinol Metab 99(10): 3790-3799.
79. Tian, S., et al. (2018). "Upregulation of pyruvate kinase M2 expression by fatty acid synthase contributes to gemcitabine resistance in pancreatic cancer." Oncol Lett 15(2): 2211-221.
(此全文20250810後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *