帳號:guest(3.145.104.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:江哲昇
作者(英文):Zhe-Sheng Jiang
論文名稱:利用細胞激素誘導殺手細胞結合免疫檢查點PD-L1抑制劑DH-012之免疫療法以毒殺胰腺癌
論文名稱(英文):Evaluating immune checkpoint inhibitor DH-012 to enhance cytokine-induced killer cells in pancreatic ductal adenocarcinoma immunotherapy by inhibiting PD-L1
指導教授:邱紫文
指導教授(英文):Tzyy-Wen Chiou
口試委員:袁大鈞
韓鴻志
口試委員(英文):Ta-Chun Yuan
Horng-Jyh Harn
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610713011
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:65
關鍵詞:胰腺癌PD-L1蛋白免疫檢查點抑制劑細胞激素誘導殺手細胞
關鍵詞(英文):pancreatic ductal adenocarcinomaPD-L1immune checkpoint inhibitorcytokine-induced killer cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
胰腺癌患者的五年存活率僅有5%,其免疫抑制的腫瘤微環境是難以治療的原因之一。胰腺癌細胞透過 PD-L1等免疫檢查點的表達,能逃避免疫細胞的辨識,免疫細胞因此無法攻擊癌細胞。本研究以體外實驗證實小分子藥物 DH-012能有效降低胰腺癌細胞膜上PD-L1蛋白之表達。另外,自小鼠脾臟或成人周邊血中分離出免疫細胞群,經過細胞激素誘導活化並放大,並使用細胞激素誘導殺手細胞毒殺胰臟腫瘤細胞。實驗結果發現,經過 DH-012處理後的胰臟腫瘤細胞對於細胞激素誘導殺手細胞毒殺較未處理組為敏感。透過檢測實驗組培養基中腫瘤壞死因子α 與干擾素γ,驗證腫瘤細胞的凋亡與免疫活化的程度呈現正相關。本研究為胰腺癌提供一項具開發潛力的治療策略。
The five-year survival rate of patients with pancreatic ductal adenocarcinoma (PDAC) is only 5%. The immunosuppressive tumor microenvironment is one of the reasons why it is difficult to treat PDAC. Pancreatic cancer cells can escape the recognition of T cells through the expression of immune checkpoint PD-L1. It leads to the disability of immune cells to attack cancer cells. In this study, we confirmed that small-molecule DH-012 could effectively decrease the expression profile of PD-L1 on pancreatic cancer cells. In addition, splenocytes or human peripheral blood mononuclear cell (PBMC) were activated by cytokine induction to produce cytokine-induced killer cells (CIK). It was found that under the treatment of DH-012, PDAC cells are more sensitive to the treatment of CIK than the untreated group. Through detecting the levels of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), it was revealed that the degree of tumor cell apoptosis was positively correlated to immune response activation. This study can provide a potential therapeutic strategy for the treatment of PDAC.
610713011中文摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 IX
一、 研究動機與研究目的 1
二、 研究背景介紹 3
2.1 胰臟癌 (Pancreatic cancer) 3
2.1.1 胰臟簡介 3
2.1.2 胰臟癌類型 3
2.1.3 胰臟癌發生率 4
2.1.4 診斷與治療 4
2.1.5 胰臟癌分期 5
2.1.6 整體存活率 5
2.1.7 致病原因 6
2.1.8 治療困境與腫瘤微環境 7
2.2 免疫療法 (Immunotherapy) 8
2.2.1 癌症免疫療法 8
2.2.2 免疫檢查點相關 9
2.2.2.1 免疫檢查點簡介 9
2.2.2.2 免疫檢查點PD-L1對胰臟癌臨床意義 9
2.2.3 細胞激素誘導殺手細胞 10
2.2.4 免疫檢查點抑制劑合併療法 11
2.2.5 小分子抑制劑 13
三、 研究材料與方法 15
3.1 實驗流程 15
3.2 癌細胞來源與培養 15
3.5 免疫細胞來源與培養 17
3.5.1 小鼠免疫細胞 17
3.5.2 人源免疫細胞 18
3.6 流式細胞分析 (Flow cytometry) 18
3.6.1 小鼠免疫細胞 18
3.6.2 人源免疫細胞 19
3.6.3 胰臟癌細胞 19
3.7 西方墨點法 (Western blot) 20
3.7.1 蛋白質萃取 20
3.7.2 蛋白質定量 20
3.7.3 膠體電泳、轉印與抗體呈色 21
3.8 反轉錄聚合酶連鎖反應 (RT-PCR) 21
3.9 細胞毒殺 (Cytotoxicity test) 22
3.10 酵素免疫分析法 (ELISA) 23
四、 研究结果與討論 25
4.1 胰臟癌細胞膜上 PD-L1表達受小分子藥物調控 25
4.1.1 胰臟癌細胞株 PD-L1表達 25
4.1.2 小分子藥物 DH-012降低胰臟癌細胞膜上 PD-L1蛋白之表達 26
4.1.3 小分子藥物 DH-012抑制 PD-L1基因表達 29
4.2 製備細胞激素誘導殺手細胞 (CIK) 31
4.2.1 鼠源細胞激素誘導殺手細胞 31
4.2.2 人源細胞激素誘導殺手細胞 35
4.3 細胞毒殺測試 40
4.3.1 存活率比較 40
4.3.2 分泌因子比較 45
4.4 機制初步探討 48
五、 結論 57
六、 參考文獻 59





Bengtsson, A., Andersson, R., & Ansari, D. (2020). The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. Sci Rep, 10(1), 16425. doi:10.1038/s41598-020-73525-y
Birnbaum, D. J., Finetti, P., Lopresti, A., Gilabert, M., Poizat, F., Turrini, O., . . . Bertucci, F. (2016). Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget, 7(44), 71198-71210. doi:10.18632/oncotarget.11685
Campanelli, R., Palermo, B., Garbelli, S., Mantovani, S., Lucchi, P., Necker, A., . . . Giachino, C. (2002). Human CD8 co-receptor is strictly involved in MHC-peptide tetramer-TCR binding and T cell activation. Int Immunol, 14(1), 39-44. doi:10.1093/intimm/14.1.39
Chatterjee, A., Rodger, E. J., Ahn, A., Stockwell, P. A., Parry, M., Motwani, J., . . . Hersey, P. (2018). Marked Global DNA Hypomethylation Is Associated with Constitutive PD-L1 Expression in Melanoma. iScience, 4, 312-325. doi:10.1016/j.isci.2018.05.021
Chen, L., & Zhang, X. (2016). Primary analysis for clinical efficacy of immunotherapy in patients with pancreatic cancer. Immunotherapy, 8(2), 223-234. doi:10.2217/imt.15.105
Chiossone, L., Chaix, J., Fuseri, N., Roth, C., Vivier, E., & Walzer, T. (2009). Maturation of mouse NK cells is a 4-stage developmental program. Blood, 113(22), 5488-5496. doi:10.1182/blood-2008-10-187179
Danilova, L., Ho, W. J., Zhu, Q., Vithayathil, T., De Jesus-Acosta, A., Azad, N. S., . . . Yarchoan, M. (2019). Programmed Cell Death Ligand-1 (PD-L1) and CD8 Expression Profiling Identify an Immunologic Subtype of Pancreatic Ductal Adenocarcinomas with Favorable Survival. Cancer Immunol Res, 7(6), 886-895. doi:10.1158/2326-6066.CIR-18-0822
Farkona, S., Diamandis, E. P., & Blasutig, I. M. (2016). Cancer immunotherapy: the beginning of the end of cancer? BMC Med, 14, 73. doi:10.1186/s12916-016-0623-5
Feng, M., Xiong, G., Cao, Z., Yang, G., Zheng, S., Song, X., . . . Zhao, Y. (2017). PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett, 407, 57-65. doi:10.1016/j.canlet.2017.08.006
Ferraro, A., D'Alise, A. M., Raj, T., Asinovski, N., Phillips, R., Ergun, A., . . . Benoist, C. (2014). Interindividual variation in human T regulatory cells. Proc Natl Acad Sci U S A, 111(12), E1111-1120. doi:10.1073/pnas.1401343111
Fujiura, Y., Kawaguchi, M., Kondo, Y., Obana, S., Yamamoto, H., Nanno, M., & Ishikawa, H. (1996). Development of CD8 alpha alpha+ intestinal intraepithelial T cells in beta 2-microglobulin- and/or TAP1-deficient mice. J Immunol, 156(8), 2710-2715.
Gao, H. L., Liu, L., Qi, Z. H., Xu, H. X., Wang, W. Q., Wu, C. T., . . . Yu, X. J. (2018). The clinicopathological and prognostic significance of PD-L1 expression in pancreatic cancer: A meta-analysis. Hepatobiliary Pancreat Dis Int, 17(2), 95-100. doi:10.1016/j.hbpd.2018.03.007
Gou, Q., Dong, C., Xu, H., Khan, B., Jin, J., Liu, Q., . . . Hou, Y. (2020). PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis, 11(11), 955. doi:10.1038/s41419-020-03140-2
Han, Y., Mu, D., Liu, T., Zhang, H., Zhang, J., Li, S., . . . Ren, X. (2021). Autologous cytokine-induced killer (CIK) cells enhance the clinical response to PD-1 blocking antibodies in patients with advanced non-small cell lung cancer: A preliminary study. Thorac Cancer, 12(2), 145-152. doi:10.1111/1759-7714.13731
Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., . . . Heeschen, C. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313-323. doi:10.1016/j.stem.2007.06.002
Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057-1061. doi:10.1126/science.1079490
Hustinx, S. R., Leoni, L. M., Yeo, C. J., Brown, P. N., Goggins, M., Kern, S. E., . . . Maitra, A. (2005). Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion. Mod Pathol, 18(7), 959-963. doi:10.1038/modpathol.3800377
Idachaba, S., Dada, O., Abimbola, O., Olayinka, O., Uma, A., Olunu, E., & Fakoya, A. O. J. (2019). A Review of Pancreatic Cancer: Epidemiology, Genetics, Screening, and Management. Open Access Maced J Med Sci, 7(4), 663-671. doi:10.3889/oamjms.2019.104
Iodice, S., Gandini, S., Maisonneuve, P., & Lowenfels, A. B. (2008). Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg, 393(4), 535-545. doi:10.1007/s00423-007-0266-2
Isakov, N., Wange, R. L., Burgess, W. H., Watts, J. D., Aebersold, R., & Samelson, L. E. (1995). ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J Exp Med, 181(1), 375-380. doi:10.1084/jem.181.1.375
Ishida, Y., Agata, Y., Shibahara, K., & Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J, 11(11), 3887-3895.
Johnson, B. A., 3rd, Yarchoan, M., Lee, V., Laheru, D. A., & Jaffee, E. M. (2017). Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res, 23(7), 1656-1669. doi:10.1158/1078-0432.CCR-16-2318
Kanda, M., Matthaei, H., Wu, J., Hong, S. M., Yu, J., Borges, M., . . . Goggins, M. (2012). Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology, 142(4), 730-733 e739. doi:10.1053/j.gastro.2011.12.042
Kelly, D. L., Li, X., Kilday, C., Feldman, S., Clark, S., Liu, F., . . . Tonelli, L. H. (2018). Increased circulating regulatory T cells in medicated people with schizophrenia. Psychiatry Res, 269, 517-523. doi:10.1016/j.psychres.2018.09.006
Korc, M. (2007). Pancreatic cancer-associated stroma production. Am J Surg, 194(4 Suppl), S84-86. doi:10.1016/j.amjsurg.2007.05.004
Lafaro, K. J., & Melstrom, L. G. (2019). The Paradoxical Web of Pancreatic Cancer Tumor Microenvironment. Am J Pathol, 189(1), 44-57. doi:10.1016/j.ajpath.2018.09.009
Lai, L., Alaverdi, N., Maltais, L., & Morse, H. C., 3rd. (1998). Mouse cell surface antigens: nomenclature and immunophenotyping. J Immunol, 160(8), 3861-3868.
Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734-1736. doi:10.1126/science.271.5256.1734
Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., . . . Simeone, D. M. (2007). Identification of pancreatic cancer stem cells. Cancer Res, 67(3), 1030-1037. doi:10.1158/0008-5472.CAN-06-2030
Li, X., Wang, Z., Huang, J., Luo, H., Zhu, S., Yi, H., . . . Zhu, N. (2019). Specific zinc finger-induced methylation of PD-L1 promoter inhibits its expression. FEBS Open Bio, 9(6), 1063-1070. doi:10.1002/2211-5463.12568
Lim, J. F., Berger, H., & Su, I. H. (2016). Isolation and Activation of Murine Lymphocytes. J Vis Exp(116). doi:10.3791/54596
Lyko, F. (2018). The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet, 19(2), 81-92. doi:10.1038/nrg.2017.80
Murakami, T., Hiroshima, Y., Matsuyama, R., Homma, Y., Hoffman, R. M., & Endo, I. (2019). Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg, 3(2), 130-137. doi:10.1002/ags3.12225
Pievani, A., Borleri, G., Pende, D., Moretta, L., Rambaldi, A., Golay, J., & Introna, M. (2011). Dual-functional capability of CD3+CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood, 118(12), 3301-3310. doi:10.1182/blood-2011-02-336321
Pishvaian, M. J., & Brody, J. R. (2017). Therapeutic Implications of Molecular Subtyping for Pancreatic Cancer. Oncology (Williston Park), 31(3), 159-166, 168.
Poh, S. L., & Linn, Y. C. (2016). Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts. Cancer Immunol Immunother, 65(5), 525-536. doi:10.1007/s00262-016-1815-8
Predina, J., Eruslanov, E., Judy, B., Kapoor, V., Cheng, G., Wang, L. C., . . . Singhal, S. (2013). Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery. Proc Natl Acad Sci U S A, 110(5), E415-424. doi:10.1073/pnas.1211850110
Provenzano, P. P., Cuevas, C., Chang, A. E., Goel, V. K., Von Hoff, D. D., & Hingorani, S. R. (2012). Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 21(3), 418-429. doi:10.1016/j.ccr.2012.01.007
Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol, 10(1), 10-27. doi:10.14740/wjon1166
Ross, S. H., & Cantrell, D. A. (2018). Signaling and Function of Interleukin-2 in T Lymphocytes. Annu Rev Immunol, 36, 411-433. doi:10.1146/annurev-immunol-042617-053352
Ryan, D. P., Hong, T. S., & Bardeesy, N. (2014). Pancreatic adenocarcinoma. N Engl J Med, 371(11), 1039-1049. doi:10.1056/NEJMra1404198
Schmidt-Wolf, I. G., Negrin, R. S., Kiem, H. P., Blume, K. G., & Weissman, I. L. (1991). Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med, 174(1), 139-149. doi:10.1084/jem.174.1.139
Thakral, D., Dobbins, J., Devine, L., & Kavathas, P. B. (2008). Differential expression of the human CD8beta splice variants and regulation of the M-2 isoform by ubiquitination. J Immunol, 180(11), 7431-7442. doi:10.4049/jimmunol.180.11.7431
Weiss, G. J., Waypa, J., Blaydorn, L., Coats, J., McGahey, K., Sangal, A., . . . Khemka, V. (2017). A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br J Cancer, 117(1), 33-40. doi:10.1038/bjc.2017.145
Wieckowski, E. U., Visus, C., Szajnik, M., Szczepanski, M. J., Storkus, W. J., & Whiteside, T. L. (2009). Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol, 183(6), 3720-3730. doi:10.4049/jimmunol. 0900970
Wu, Q., Jiang, L., Li, S. C., He, Q. J., Yang, B., & Cao, J. (2021). Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol Sin, 42(1), 1-9. doi:10.1038/s41401-020-0366-x
Zhang, J., Bu, X., Wang, H., Zhu, Y., Geng, Y., Nihira, N. T., . . . Wei, W. (2018). Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature, 553(7686), 91-95. doi:10.1038/nature25015
Zhang, W., Song, Z., Xiao, J., Liu, X., Luo, Y., Yang, Z., . . . Li, A. (2019). Blocking the PD-1/PD-L1 axis in dendritic cell-stimulated Cytokine-Induced Killer Cells with pembrolizumab enhances their therapeutic effects against hepatocellular carcinoma. J Cancer, 10(11), 2578-2587. doi:10.7150/jca.26961
Zhao, Y., Wang, X. X., Wu, W., Long, H., Huang, J., Wang, Z., . . . Chen, D. (2019). EZH2 regulates PD-L1 expression via HIF-1alpha in non-small cell lung cancer cells. Biochem Biophys Res Commun, 517(2), 201-209. doi:10.1016/j.bbrc.2019.07.039
Zitvogel, L., Galluzzi, L., Smyth, M. J., & Kroemer, G. (2013). Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity, 39(1), 74-88. doi:10.1016/ j.immuni.2013.06.014
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *